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Clever coordinates (ξ1, ξ2, ξ3)(ξ1, ξ2, ξ3)(ξ1, ξ2, ξ3) are required to understand magnetic
fields that depend non-trivially on all three spatial coordinates.

~x(ξ1, ξ2, ξ3) = x(ξ1, ξ2, ξ3)x̂ + y(ξ1, ξ2, ξ3)ŷ + z(ξ1, ξ2, ξ3)ẑ

(x, y, z) are Cartesian coordinates and superscripts just number (ξ1, ξ2, ξ3).

Certainly true for understanding stellarators, but is also true more
generally—whether in the laboratory or in space.

What is generally taught is orthogonal coordinates in three space, ∂~x
∂ξi
·

∂~x
∂ξj

= 0 when i 6= j, and only part of that. What is needed is the general
theory of coordinates in three dimensional space.

A one-hour lecture is too short for mastery. For that read Boozer, Rev. Mod. Phys. 76,
1071 (2004), especially the appendix.



Derivation of Cylindrical Coordinates

~x(r, θ, z) = x(r, θ)x̂ + y(r, θ)ŷ + zẑ
x(r, θ) = r cos θ and y(r, θ) = r sin θ.

Three tangent vectors
∂~x
∂r = cos θx̂ + sin θŷ, ∂~x

∂θ = −r sin θx̂ + r cos θŷ, and ∂~x
∂z = ẑ.

Jacobian J ≡
(
∂~x
∂r ×

∂~x
∂θ

)
· ∂~x∂z = r

Three gradient vectors
Calculated using the dual relations, which are explained later, otherwise almost impossibly complicated.

~∇r =
∂~x
∂θ×

∂~x
∂z
J = cos θx̂ + sin θŷ, ~∇θ =

∂~x
∂z×

∂~x
∂r
J = − sin θx̂+cos θŷ

r , and

~∇z =
∂~x
∂r×

∂~x
∂θ
J = ẑ. Note (~∇r × ~∇θ) · ~∇z = 1

J .

Three crossed gradient vectors
∂~x
∂r = J ~∇θ × ~∇z, ∂~x

∂θ = J ~∇z × ~∇r, and ∂~x
∂z = J ~∇r × ~∇θ
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General Coordinates in Three Dimensional Space
Coordinates, such as (r, θ, z) are denoted by superscripts (ξ1, ξ2, ξ3).

The orthogonality theorem ∂~x
∂ξi
· ~∇ξj = δij, most important result.

∂~x
∂ξi
· ~∇ξj = ∂x

∂ξi
· ∂ξ

j

∂x + ∂y
∂ξi
· ∂ξ

j

∂y + ∂z
∂ξi
· ∂ξ

j

∂z = ∂ξj

∂ξi
with ξ’s other than ξi held constant.

The gradient: ~∇f(ξ1, ξ2, ξ3) =
∑
i

∂f

∂ξi
~∇ξi

Covariant vector: ~A =
∑
j

Aj ~∇ξj where Aj = ~A ·
∂~x

∂ξj

~∇× ~A =
∑

ij
∂Aj
∂xi
~∇ξi × ~∇ξj.

Contravariant vector: ~B =
∑
i

Bi
∂~x

∂ξi
where Bi = ~B · ~∇ξi.

∂~x
∂ξ1

= J ~∇ξ2 × ~∇ξ2, ~∇ ·
(
B1 ∂~x

∂ξ1

)
= 1
J

∂
∂ξ1

(
JB1

)
, where 1

J = ~∇ξ1 · (~∇ξ2 × ~∇ξ3).
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General Contravariant Magnetic Field Representation
	

			
	

Toroidal (r, θ, ϕ) Cartesian coordinate relations
x = (R0 + r cos θ) cosϕ

y = (R0 + r cos θ) sinϕ

z = −r sin θ

The vector potential of the magnetic field is
~A = Ar~∇r+Aθ~∇θ+Aϕ~∇ϕ+~∇g, where ~B = ~∇× ~A.
Let ∂g/∂r = −Ar, ψt/2π ≡ Aθ + ∂g/∂θ, and ψp/2π ≡ −Aϕ − ∂g/∂θ, then

~B = ~∇ψt × ~∇ θ

2π
+ ~∇ ϕ

2π
× ~∇ψp~B = ~∇ψt × ~∇ θ

2π
+ ~∇ ϕ

2π
× ~∇ψp~B = ~∇ψt × ~∇ θ

2π
+ ~∇ ϕ

2π
× ~∇ψp general contravariant representation.

Toroidal field is non zero in the plasma, ~B · ~∇ϕ 6= 0, so (~∇ψt × ~∇θ) · ~∇ϕ 6= 0.

When ~B~B~B is time dependent, ψp(ψt, θ, ϕ, t)ψp(ψt, θ, ϕ, t)ψp(ψt, θ, ϕ, t) and ~x(ψt, θ, ϕ, t)~x(ψt, θ, ϕ, t)~x(ψt, θ, ϕ, t); lines of
~B~B~B cannot change topology when ψpψpψp is independent of time.

~x(ψt, θ, ϕ, t) is a homotopy; gij ≡ ∂~x
∂ξi
· ∂~x
∂ξj

is the metric tensor.
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Magnetic Field Lines d~xdτ = ~B

~B =
d~x

dτ
=
∑
i

∂~x

∂ξi
dξi

dτ
, so

dξi

dτ
= ~B · ~∇ξi

Magnetic Field Line Hamiltonian ψp(ψt, θ, ϕ)

	

			
	

dψt
dϕ
≡
~B · ~∇ψt
~B · ~∇ϕ

= −
∂ψp(ψt, θ, ϕ)

∂θ

dθ

dϕ
≡

~B · ~∇θ
~B · ~∇ϕ

= +
∂ψp(ψt, θ, ϕ)

∂ψt
.

Standard Hamiltonian mechanics is
dp
dt = −∂H(p,q,t)

∂q and dq
dt = ∂H

∂p .
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Magnetic Surfaces, ~B · ~∇f(~x) = 0, and Magnetic Coordinates

When magnetic surfaces exist, the contravariant form for ~B is simplified.

~B =
B1

2π
~∇f×~∇θ+

B2

2π
~∇ϕ×~∇f with ~∇· ~B = 0 implying

∂B1

∂ϕ
+
∂B2

∂θ
= 0.

The general solution uses Ψt(f ), Ψp(f ) and λ(f, θ, ϕ),

B1 =

(
1 +

∂λ

∂θ

)
dΨt
df

and B2 =
dΨp
df
− ∂λ

∂ϕ

dΨt
df

.

Let ϑ ≡ θ + λ, then (Ψt, ϑ, ϕ) are magnetic coordinates;

~B = ~∇Ψt × ~∇
ϑ

2π
+ ~∇

ϕ

2π
× ~∇Ψp(Ψt).

The rotational transform is ι ≡ dΨp
dΨt

and ϑ = Θ + ιϕ, where Θ is a

field-line constant; ~B = ~∇ψt × ~∇ Θ
2π is the Clebsch representation.

Normal notation for magnetic coordinates is (ψt, θ, ϕ)(ψt, θ, ϕ)(ψt, θ, ϕ).
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Magnetic Differential Equation ~B · ~∇f = g~B · ~∇f = g~B · ~∇f = g

Solutions essentially require magnetic coordinates, then
(
∂

∂ϕ
+ ι

∂

∂θ

)
f =

g

~B · ~∇ϕ
.

Write
g

~B · ~∇ϕ
=
∑
mn

γmn sin(nϕ−mθ), then f = f0(ψt)−
∑
mn

γmn
n− ιm

cos(nϕ−mθ).
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Figure 5. (a) Poincaré plot of magnetic fields at 0.54 ms in the
limited DIII-D simulation, when the first n = 1 mode peaks.
(b) Poincaré plot at 1.04 ms when the second n = 1 mode peaks.

with no systematic trend in the maximum amplitudes. Away
from the peak however, a clear trend in the amplitudes with
device major radius is found. In figure 11 the amplitude of
δBr/B versus major radius at both q = 1 and r/a = 0.8
for the three simulations is plotted. At q = 1, the trend is
slightly weaker than 1/R, while further towards the edge,
at r/a = 0.8, the amplitudes fall off slightly faster than
1/R. In figure 12, we plot the RE confinement time (τRE =
NRE/[dNRE/dt]) versus major radius at its minimum value
(when the magnetic fluctuations are largest) for each simulation
except the ITER simulation, where no RE losses during the
MHD phase occurred. The DIII-D diverted simulation exhibits
a 25 times larger confinement time than the C-Mod simulation,
which is very close to a factor of R3.

Figure 6. (a) Poloidal flux contours for Alcator C-Mod equilibrium
used in the two simulations. Solid boundary is simulation boundary,
dashed line is actual C-Mod first wall geometry. (b) Neutral Ar
profiles at t = 0 for the core-peaked (solid) and edge-peak (dashed)
C-Mod simulations. Temperature profiles (c) and current density
profiles (d ) at 0.1 ms (prior to MHD onset) are shown for both cases,
along with the initial profiles (dashed–dotted).

5. Discussion and conclusions

Five extended MHD simulations have been performed of
rapid shutdown scenarios in three tokamaks to investigate
the effects of various experimental parameters on runaway
electron confinement during the thermal-quench-induced
MHD fluctuations. Due to certain simplifications, especially
in the impurity delivery model and the runaway energy
distribution, these results cannot be validated in all aspects
against experiments on C-Mod and DIII-D, although certain
experimental features are reproduced. The simulations should
be viewed in part as numerical experiments designed to fill
experimental gaps and to draw out certain trends that may be
ambiguous in the data.

In two DIII-D simulations, the effects of plasma shape
were examined by comparing an elongated, diverted plasma
geometry with a lower elongation, limited plasma. Overall,
the fraction of REs lost in the limited plasma was smaller
than in the diverted plasma, which is consistent with the
general experimental observation that limited plasmas confine
REs better. However, perhaps more interestingly, the loss
mechanism for the REs in the two configuration was essentially
different. In the diverted case, stochastic fields extending
across much of the domain caused REs to follow open field
lines to the divertor. In the limited plasma, large stochastic
regions never appeared, and the RE losses were entirely
associated with an external n = 1 motion of the plasma into
the centre column, producing a tell-tale n = 1 RE striking
pattern. In the limited plasma, both the spatial localization
of the first n = 1 mode, and the absent toroidal harmonics
during the second n = 1 mode are unique features not
observed in the diverted simulation, suggesting differences in
the coupling between MHD modes may play a role in improved
RE confinement.

The most significant feature of the two C-Mod simulations
is that, despite the variation in Ar deposition profile and the
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The solution is singular on rational surfaces ι(ψMN) =
N/M , with M and N integers, which causes magnetic is-
lands and stochastic regions.

A simple calculation can be made of islands. The mag-
netic field line Hamiltonian allows a complete picture.

It is simpler to obtain an intuitive understanding of Hamil-
tonian mechanics by thinking about magnetic field lines
than the other way around.
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Magnetic Islands
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In most problems g(x⃗) is known and f (x⃗) is to be calculated,
and equation (189) provides an easily evaluated solution except
on rational magnetic surfaces.

Rational magnetic surfaces areψt surfaces on which ι(ψt )

is the ratio of two integers, N/M . On a rational surface,
magnetic field lines close on themselves after N circuits of
the torus in θ , which is the poloidal angle, and M circuits of
the torus in ϕ, which is the toroidal angle, figure 1. Irrational
magnetic surfaces are surfaces on which ι(ψt ) is an irrational
number. Each magnetic field line on an irrational surface
comes arbitrarily close to every point on that surface but never
crosses the same point twice; it never closes on itself.

On the rational surface ι = N/M , the magnetic
differential equation can be solved only if the function g(x⃗)

obeys the constraint γMN = 0. This constraint can be
expressed differently by noting that the magnetic differential
equation can also be written as ∂f/∂ℓ = g/B, where ℓ is
the distance along a magnetic field line and B ≡ |B⃗| is the
magnetic field strength. When a magnetic field line closes on
itself, a solution f exists only if

∮
(g/B) dℓ = 0.

Although the theory of magnetic differential equations
sounds esoteric, it has many important applications. The
simplest is the splitting of magnetic surfaces by islands when a
magnetic field B⃗0 with perfect surfaces is subjected to a small
perturbation δB⃗, which will be studied in section 5.2.2.

5.2.2. Magnetic islands. The nature of plasma confinement
is very different within and across magnetic surfaces, so an
important measure of quality of a magnetic field for confining
plasmas is the quality of the magnetic surfaces. This section
shows that small perturbations can split the magnetic surfaces
with islands, which have a width proportional to the square root
of the magnitude of the perturbation—even small magnetic
perturbations can greatly degrade the quality of a magnetic
field. Waelbroeck has reviewed the physics of magnetic
islands [42].

The calculation of the splitting of magnetic surfaces by
small perturbations uses the magnetic differential equation,
equation (186). In the calculation the magnetic field is written
as B⃗ = B⃗0 + δB⃗, where B⃗0 has perfect magnetic surfaces
and can be written in the form of equation (184), and δB⃗
is very small compared to B⃗0. The perturbed magnetic
surfaces are given by the constant-ρ surfaces, where ρ(x⃗)

obeys (B⃗0 + δB⃗) · ∇⃗ρ(x⃗) = 0. Letting ρ = ρ0(ψt ) + δρ,
and keeping only linear terms in the perturbation

(
∂

∂ϕ
+ ι
∂

∂θ

)
δρ = −δB⃗ · ∇⃗ψt

B⃗0 · ∇⃗ϕ
dρ0

dψt

. (190)

Retaining only one Fourier term

δB⃗ · ∇⃗ψt

B⃗0 · ∇⃗ϕ
= bmn sin(nϕ −mθm), (191)

δρ = ρmn cos(nϕ −mθm), where (192)

ρmn = bmn

n− ιm
dρ0

dψt

. (193)

The function ρmn that gives the shape of the perturbed
magnetic surfaces, equation (193), is well behaved except near
the resonance ι(ψt ) = n/m. Near this resonant surface, which
is denoted by ψt = ψmn, equation (193) appears singular

Figure 4. The magnetic surfaces given by equation (197) are plotted
for an m = 3 magnetic island in the ϕ = 0 plane. The surface
|s| = 1 is the island separatrix, and the limit |s|→ 0 gives the island
O-point. The half-width of the island is δ. Reproduced with
permission from [6]. Copyright 2004 by the American Physical
Society.

but this singularity can be removed by choosing dρ0/dψt =
mι′mn(ψt − ψmn), where ι′mn ≡ (dι/dψt )ψmn

. With this choice

ρ = mι′mn

(ψt − ψmn)
2

2
− bmn cos(nϕ −mθ). (194)

The identity cos(2x) = 1−2 sin2 x implies equation (194) can
be rewritten as

(ψt − ψmn)
2 =
(
ρ + bmn

2bmn

− sin2
(

nϕ −mθ

2

))
δ2

=
(

s2 − sin2
(

nϕ −mθ

2

))
δ2, (195)

δ ≡
√

4bmn

mι′mn

, (196)

where s2 ≡ (ρ + bmn)/2bmn is constant along a magnetic field
line. Equivalently,

ψt − ψmn = sδ

|s|

√

s2 − sin2
(

nϕ −mθ

2

)
. (197)

Magnetic surfaces split by an island are illustrated in figure 4.
The quantity δ is called the island half width in ψt space. The
island half width in physical space is δx = δ/|∇⃗ψt |. In a
cylindrical plasma model, the island half width is

δx =

√
4R0

mdι/dr

Br

B0
, (198)

where δB⃗ · r̂ = Br cos(nϕ −mθm) and B⃗0 · ∇⃗ϕ = B/R0.
The toroidal magnetic flux enclosed in the island region

can be obtained by an integration of equation (197) over the
area in the region 1 > s > −1. The toroidal flux in the island
region is ψI = 4δ/π . The toroidal magnetic flux enclosed by
the magnetic surface that forms the inner side of the separatrix,
the curve s = −1, is ψmn − ψI /2, and the toroidal magnetic
flux enclosed by the magnetic surface that forms the outer side
of the separatrix, the curve s = 1, is ψmn + ψI /2.

27

When a magnetic field ~B0 with perfect surfaces is per-
turbed by a field δ ~B, the perturbed surfaces are given by
f = f0(ψt) + δf = const., where ( ~B0 + δ ~B) · ~∇f = 0, so

~B0 · ~∇δf = −δ ~B · ~∇ψt
df0
dψt

.

Let
δ ~B · ~∇ψt
~B0 · ~∇ϕ

= bMN sin(Nϕ−Mθ), and f0 =
M

2

dι

dψt
(ψt − ψMN)2.

δf = bMN cos(Nϕ−Mθ) = bMN

(
1− 2 sin2

(
Nϕ−Mθ

2

))
so

ψt = ψmn +
s

|s|

√
4bMN

mdι/dψt

(
s2 − sin2

(
Nϕ−Mθ

2

))
,

where s2 ≡ f + bmn ≥ 0 is a constant; s2 > 1 means outside and s2 < 1 is inside the
island.

The island halfwidth is δ ≡

√
4bMN

mdι/dψt
.
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Covariant Representation for ~B when ~∇p(ψt) = ~j × ~B

Since ~j · ~∇ψt = 0 and ~∇ ·~j = 0, the current density has the representation

~j = − ∂G
∂ψt

~∇ϕ× ~∇ψt
2π

+
∂I
∂ψt

~∇ψt × ~∇θ
2π

, where
∂

∂θ

∂G
∂ψt

=
∂

∂ϕ

∂I
∂ψt

.

Consequently,
∂G
∂ψt

=
dG(ψt)

dψt
+
∂ν

∂ϕ
and

∂I
∂ψt

=
dI(ψt)

dψt
+
∂ν

∂θ
.

Since ~∇× ~B = µ0~j, the field ~B =
µ0

2π

{
G(ψt)~∇ϕ+ I(ψt)~∇θ − ν ~∇ψt + ~∇F

}
The contravariant representation of 2π ~B = ~∇ψt × ~∇θ + ι~∇ϕ× ~∇ψt is unchanged by

new angles θ = θn + ιω and ϕ = ϕn + ω, so the covariant representation can be written
~B =

µ0
2π

{
G~∇ϕn + I ~∇θn − νn~∇ψt + ~∇Fn

}
; νn = ν +

(
dG

dψt
+ ι

dI

dψt

)
ω; Fn = F + (G+ ιI)ω.

Hamada (1962) chose νn = 0 giving ~B =
µ0

2π

{
G~∇ϕH + I ~∇θH + ~∇FH

}
Boozer (1981) chose Fn = 0 giving ~B =

µ0

2π

{
G~∇ϕB + I ~∇θB

}
+ β∗~∇ψt.
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Particle Drift Hamiltonian
The lowest order Hamiltonian for the particle drift motion is easily obtained using

Boozer coordinates.

H =
1

2
mv2|| + µB + qΦ where the adiabatic invariant µ =

mv2⊥
2B

The particle mass and charge are m and q. The velocity of the particle parallel to ~B is
~v||, and the velocity perpendicular to ~B is ~v⊥. The electric potential is Φ.

The momentum that is canonically conjugate to the position vector is ~P = m~v + q ~A,
where ~A is the vector potential; ~B = ~∇× ~A.

Pθ ≡ ~P · ∂~x
∂θ

and Pϕ ≡ ~P · ∂~x
∂ϕ

are canonically conjugate to θ and ϕ.

When the gyroradius is small, only the parallel component of the velocity remains
large ~v → v|| ~B/B as the gyroradius to system size goes to zero.

In Boozer coordinates, ~B ·∂~x/∂θ = µ0I/2π and ~B ·∂~x/∂ϕ = µ0G/2π and ~A·∂~x/∂θ =

ψt and ~A · ∂~x/∂ϕ = −ψp:

Pθ =
mu0I(ψt)

2πB
mv|| + qψt and Pϕ =

mu0G(ψ(t)

2πB
mv|| − qψp.
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Fundamental Results

General Contravariant Representation of ~B:

~B = ~∇ψt × ~∇ θ

2π
+ ~∇ ϕ

2π
× ~∇ψp.

Magnetic Field Line Hamilonian:
dψt
dϕ

= −
∂ψp(ψt, θ, ϕ)

∂θ
;

dθ

dϕ
= +

∂ψp(ψt, θ, ϕ)

∂ψt
.

Covariant Representation of ~B:

~B =
µ0G(ψt)

2π
~∇θ +

µ0I(ψt)

2π
~∇ϕ + β∗(ψt, θ, ϕ)~∇ψt

Particle Drift Hamiltonian: H(Pθ, θ, Pϕ, ϕ) = m
2 v

2
|| + µB + qΦ;

Pθ = µ0I
2πBmv|| +

q
2πψt; Pϕ = µ0G

2πBmv|| −
q

2πψp.

When θ = ϑ+Nϕ and B(ψt, ϑ), then Pc ≡ Pϕ −NPθ is conserved—called quasi-symmetry.
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Inventions in Stellarator Design
Lectures naturally focus on what is known—not where major innova-

tions and inventions are possible.

Lectures on stellarator design should be different. Much has been achieved, but obvi-
ous opportunities for major advancements remain for anyone willing to explore them.

The stellarator is unique among all fusion concepts, inertial and mag-
netic, in not requiring any part of the state in which the plasma is con-
fined to be produced by the plasma itself which makes computational
design uniquely reliable.

• The cost of computational design is between 0.1% and 1% of the cost of building a
major experiment.

• Experiments are costly, (a) build in conservatism—even apparently minor changes
in design are not possible and therefore remain unstudied—and (b) are built and
operated over long periods time (decades).

• Ideally experiments should only be built to validate a computational design.
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Coil Design

1. Can coils be designed that allow easy access
to the plasma chamber? Rapid changes in the
structures surrounding the plasma are critical for
rapid development of fusion energy.
A green helical coil is shown wrapped around the cham-

ber of a quasi-axisymmetric stellarator. The remainder of
the external field could be produced by coils that do not
encircle the plasma and are easily removed together with
large wall segments. Unexplored
2. Can great improvements be made in coil design by using only those

external magnetic field distributions that can be efficiently produced at a
great distance?
Curl-free magnetic fields decay through space as e−kx where k is the wavenumber of

the field. One can determine all possible external magnetic field and order them by their
efficiency of production. Benefits largely unexplored
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Identification of Attractive Magnetic Fields

Optimization: Numerical optimizations can (1) refine an initial guess or
(2) maintain the optimization of a curl-free magnetic field as the plasma
pressure is increased.

About fifty magnetic field distributions can be produced by coils with
adequate efficiency for fusion applications—too many possibilities to ex-
plore them all.

Success requires identification of desirable starting points.

Annular Design: An optimal stellarator would have low plasma trans-
port in the outer quarter of the radius and rapid transport in the inner three
quarters.

Implications almost unexplored
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A New Method of Identifiing Attractive Magnetic Fields
Dot ∂~x∂θ and ∂~x

∂ϕ with the co- and contra-variant forms of ~B,

2π ~B =
G

µ0

~∇ϕ +
I

µ0

~∇θ + β∗~∇ψt =
1

J

(
∂~x

∂ϕ
+ ι(ψt)

∂~x

∂θ

)
,

to determine an outer magnetic surface with desirable properties.

There are three free functions to satisfy two constraints.
On a ψt surface (R, ζ, Z) cylindrical coordinates are related to (θ, ϕ) magnetic coor-

dinates by three periodic functions:

R(θ, ϕ), ζ = ϕ + ω(θ, ϕ), and Z(θ, ϕ).

For curl-free solutions, the plasma current I = 0I = 0I = 0.
The magnetic field everywhere can be determined by choosing the ef-

ficient distributions of external magnetic fields so there is no magnetic
field normal to the surface ~x(θ, ϕ)

Plasma pressure doesn’t change the external field when I = 0I = 0I = 0.
Method unexplored
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Protection of the Walls from ααα Particle Damage

Helium ions (α particles) produced by the nuclear reactions can become
deeply embedded in the walls if they strike while they are still energetic.
The accumulation of helium gas in crystal lattices creates blisters and
fuzzy regions, which destroys the structural integrity of the walls.

Energetic α’s that leave fusion plasmas are trapped particles executing
banana orbits and in principle their trajectories could be controlled so
they harmlessly strike a liquid, such a lithium on tin, not a solid wall.

Feasibility essentially unexplored
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Divertors to Carry Escaping Plasma to Pumps

The particle exhaust from plasmas must be concentrated to the loca-
tion of pumps but this concentration can make the power loading on the
walls intolerably high unless a large fraction of the power can be radi-
ated away.

Two solutions:

(1) Resonant divertor locates a chain of islands at the plasma edge.
This requires extremely accurate control of the edge transform, ι.

(2) Non-resonant divertor uses the Hamiltonian mechanics concepts
of Cantori and turnstiles.
Beyond the outermost confining magnetic surface, a double magnetic

flux tube is formed (1/2 the flux comes in and 1/2 goes out), which strikes
the wall at a remarkably robust location.

W7-X has a resonant divertor; non-resonant divertors relatively
unexplored.
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