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Clever coordinates (£ 1 g2 53) are required to understand magnetic
fields that depend non-trivially on all three spatial coordinates.

(L, 8) = (e, 2,801 +y(€h, &,y + (1,8, 8)z

(z,v, z) are Cartesian coordinates and superscripts just number (&1, €2, £3).

Certainly true for understanding stellarators, but is also true more
generally—whether 1n the laboratory or in space.

What 1s generally taught is orthogonal coordinates in three space, agz :

a{j = 0 when 7 # j, and only part of that. What 1s needed 1s the general
theory of coordinates in three dimensional space.

A one-hour lecture is too short for mastery. For that read Boozer, Rev. Mod. Phys. 76,
1071 (2004), especially the appendix.



Derivation of Cylindrical Coordinates

Z(r,0,z) =x(r,0)x +y(r,0)y + 22
x(r,0) =rcosf and y(r,0)=rsinb.

Three tangent vectors

%:COSQQAZ—I—SHIQ@, %: —rsinfzx + rcosfy, and %:2.
. _ (0% o 0¥\ 0% _
Jacobian [ = (aT 89) 5, =T
Three gradient vectors
Calculated using the dual relations, which are explained later, otherwise almost impossibly complicated.
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Three crossed gradient vectors
0L — gV xVz, 95 =7gVzxVr, and % =7Vr x V0



General Coordinates in Three Dimensional Space

Coordinates, such as (r, 6, z) are denoted by superscripts (£1, 2, £3).

The orthogonality theorem gz VfJ = 5’ most important result.
(%Z V§] 82’2 %ij + gg : %gyj + ggzi : %ij gg with £’s other than ¢’ held constant.
The gradient: 61“(51 ¢2,¢3) = Z of \%

. 'S 9 ; o €z
. . S L 0x
Covariant vector: A = Z AjV£3 where A; = A+ —
. ¢J
J
V x A= Zw TV x Ve,
; 0T ; Ny
Contravariant vector: B = Z B —5 where B = B - V¢&".

')
o = gV x Ve, V- (BL5) =10 (TBY), where L = Ve - (V€2 x Ve,
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General Contravariant Magnetic Field Representation
Toroidal (r, 8, ¢) Cartesian coordinate relations

z4

Poloidal flux

r = (Ry+ rcosf)cosp

y = (Ro+ rcosf)sin g
2= —rsinf

The vector potential of the magnetic field 1s

—

A=A Vr+ApVO+ANe+Vg, where B =V
Let 0g/0r = —A,, /21 = Ap+0g/00, and ¢,/21 = —A, — 0g/00, then

— — — 0 — —
B = Vi x V2— + V2£ x V) general contravariant representation.
T T

Toroidal field is non zero in the plasma, B - Vi £ 0, so (Vi x V) - Vi 0.

When B is time dependent, Up(¢t, 0, o, t) and (¢, 0, p,1); lines of

B cannot change topology when 9, is independent of time.
=01 0T
92] — 352' agj
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1S the metric tensor.

T(Y¢, 0, @, ) is a homotopy;



Magnetic Field Lines ga: B

L dE OF de" et o o
B — T — —_— _— = B . t
= 2ogiar *© ar PV

(

Magnetic Field Line Hamiltonian 1, (¢, 6, )

N — ‘ # Poloidal flux
d@Dt _ B - VZDt _ _a¢p(¢ta (97 @) V=—fZ’-dée
o BV % -

d9 B -V Ovp(tr, 0, ) . S
dp  B-Vy Oy AN
A constant
Vo ar Toroidal flux

surface

1/J,=f1§"(/f7’¢

Standard Hamiltonian mechanics is

dp _  0H(pyugt) dqg  OH
dt — Oq anddt_é’p'




Magnetic Surfaces, B - V (&) = 0, and Magnetic Coordinates

When magnetic surfaces exist, the contravariant form for Bis simplified.

. Bi= By 0B, OB

B——foV9+—VgprfW1thVB—Olmplylng 9 +5’8 = (.

The general solution uses W¢(f), W,,(f) and A(f,0, ¢),
A\ dV AV A dW
Bl—<1+a> tandB——p—a——t

df A dpdf
Let ¥ = 6 + A, then (W4, ¥, ) are magnetic coordinates;
_ = - U - _
B=VU¥; XV—+V— X V¥,(Ty).
27 27

: : dv :
The rotational transform 1S L = d_\pr and ¥ = © + 1, where O is a

field-line constant; B V@bt X VQW 1s the Clebsch representation.

Normal notation for magnetic coordinates is (¢, 0, ).



Magnetic Differential Equation B- Vf = g

0 0
Solutions essentially require magnetic coordinates, then | — +:1— | f = %
Jdp 06 B Vo
Write %% = mgn Ymn SiN(Np —mB), then f = fo(iy) — > % cos(ny —mb).

The solution is singular on rational surfaces ¢(¢y;y) =
N/M, with M and N integers, which causes magnetic is-
lands and stochastic regions.

A simple calculation can be made of islands. The mag-
netic field line Hamiltonian allows a complete picture.

It is simpler to obtain an intuitive understanding of Hamil-
tonian mechanics by thinking about magnetic field lines
than the other way around.




Magnetic Islands

When a magnetic field EO with perfect surfaces is per-
turbed by a field 0B, the perturbed surfaces are given by

f = foly) + 0 f = const., where (EO + 55) : ﬁf = 0,80 w1

\V, v dfo — |
B 6 _— —6B X-point O-point
0: VoJ = 0 di;

0 B Y, ¢t M dt 5
Let = by Np — M6 d — ,

N — M
5f:bMNCOS(Ng0—M9):bMN(1—281n2( @2 9)) SO

_ 4byrn o (Np— M6
mn + — sin ,
\ |\| mde/ dwt 2

where s> = f + b,,, > 01is a constant; s> > 1 means outside and s*> < 1 is inside the
1sland.

mdu/diy

The island halfwidth is 6 = \/
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Covariant Representation for B when ﬁp(tpt) —j x B

Since ; : ﬁwt —0and V- ; = 0, the current density has the representation

a.__c?gﬁgpxﬁwurﬁlﬁmxﬁ@ hore 009 00T

)= T, o o0, 2w 900U, Do,
Consequently, = + and — = + —.
T 0~ Ty 0 ov  diy | 0B

Since V x B = gJ, the field B = S—O{G(wt)ego + I(¢Y4)VO — vV, + eF}
0y

The contravariant representation of 2B = ﬁwt x V6 + Lﬁg@ X ﬁtﬂt 1s unchanged by
new angles 6 = 0,, + ww and ¢ = ©,, + w, so the covariant representation can be written

, ; ; L - ac | dI
B=HM16Ye, + 1V, — v,V + VE, S v, =v+ w;,  Fy=F+(G+u)w.
2m d% d%

Hamada (1962) chose v, = 0 giving B = 50 {GVCPH + IVOy + VFH}
0y

Lo

Boozer (1981) chose F), = 0 giving B = 5
™

{GVQDB + IVHB} + 5*6"##



Particle Drift Hamiltonian

The lowest order Hamiltonian for the particle drift motion is easily obtained using
Boozer coordinates.
mv?

2B

1
H = émvﬁ + 1B + q® where the adiabatic invariant =

The particle mass and charge are m and ¢g. The velocity of the particle parallel to Bis
v)|» and the velocity perpendicular to B is v, . The electric potential is ®.

The momentum that 1s canonically conjugate to the position vector is P =miv+ qA
where A is the vector potential; B=V x A.

- 01 - O
Py=P- 6—? and FP,=P- a—x are canonically conjugate to 6 and .
e

When the gyroradius is small, only the parallel component of the velocity remains
large ¥ — v 5/ B as the gyroradius to system size goes to zero.

In Boozer coordinates, B-9/00 = puyl /2r and B-0%/dp = 11yG /2w and A-02 /50 =
Yyand A - 0T /0p = —1hy:
muol ()

Py = muv and P, =
0 or B |+ gy o

muoG((t)

2B

mu|| — q¥p.
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Fundamental Results

General Contravariant Representation of B:

Poloidal flux
v, =-[ B da,
I\ and

R 5 - 0 = . I Poboidal current
= VY X V—+ V— X V. - e
i 2T i 2T ¥p

Magnetic Field Line Hamilonian:

% _ _awp(lbta 97 90) d awp(wta (97 90)

— A constant

d Q a 0 7 d Q 3 ¢t . Zﬁr?;czﬂ Z)rzidfalzf)l.u;
Covariant Representation of B: 1,
- G
B = MGGy MIWNG | 5. (0r,6, 0) T

2T 2T

Particle Drift Hamiltonian: [ (Fy, 0, Py, ¢) = %vﬁ + uB + qd;

_ ol . _ upG
Py = gzpgmo)| + gz Pp = mpmo)| — axép
When § = ¥ + Ny and B(¢y, V), then P, = P, — N I is conserved—called quasi-symmetry.

11



Inventions in Stellarator Design

Lectures naturally focus on what 1s known—not where major innova-
tions and inventions are possible.

Lectures on stellarator design should be different. Much has been achieved, but obvi-

ous opportunities for major advancements remain for anyone willing to explore them.

The stellarator is unique among all fusion concepts, inertial and mag-
netic, in not requiring any part of the state in which the plasma is con-
fined to be produced by the plasma itself which makes computational
design uniquely reliable.

e The cost of computational design is between 0.1% and 1% of the cost of building a
major experiment.

e Experiments are costly, (a) build in conservatism—even apparently minor changes
in design are not possible and therefore remain unstudied—and (b) are built and
operated over long periods time (decades).

e [deally experiments should only be built to validate a computational design.

12



Colil Design

1. Can coils be designed that allow easy access
to the plasma chamber? Rapid changes in the
structures surrounding the plasma are critical for
rapid development of fusion energy.

A green helical coil is shown wrapped around the cham-

ber of a quasi-axisymmetric stellarator. The remainder of

the external field could be produced by coils that do not
encircle the plasma and are easily removed together with
large wall segments. Unexplored

2. Can great improvements be made 1n coil design by using only those
external magnetic field distributions that can be efficiently produced at a
great distance?

Curl-free magnetic fields decay through space as e~ ** where k is the wavenumber of
the field. One can determine all possible external magnetic field and order them by their
efficiency of production. Benefits largely unexplored
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Identification of Attractive Magnetic Fields

Optimization: Numerical optimizations can (1) refine an initial guess or
(2) maintain the optimization of a curl-free magnetic field as the plasma
pressure 1s increased.

About fifty magnetic field distributions can be produced by coils with
adequate efficiency for fusion applications—too many possibilities to ex-
plore them all.

Success requires identification of desirable starting points.

Annular Design: An optimal stellarator would have low plasma trans-
port in the outer quarter of the radius and rapid transport in the inner three
quarters.

Implications almost unexplored
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A New Method of Identifiing Attractive Magnetic Fields

Dot 50 and Wlth the co- and contra-variant forms of B

~ G - I = - oxr T

2rB = —Veo+ —V0+ 5.V = ( + L t_)a

to determine an outer magnetic surface with desirable properties.
There are three free functions to satisfy two constraints.

On a Yy surface (R, (, Z) cylindrical coordinates are related to (0, o) magnetic coor-

dinates by three periodic functions:

RO,¢), (=¢+w(l p), andZ(, ).

For curl-free solutions, the plasma current I = 0.

The magnetic field everywhere can be determined by choosing the ef-
ficient distributions of external magnetic fields so there 1s no magnetic
field normal to the surface Z(6, )

Plasma pressure doesn’t change the external field when I = 0.
Method unexplored
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Protection of the Walls from a Particle Damage

Helium ions (« particles) produced by the nuclear reactions can become
deeply embedded in the walls if they strike while they are still energetic.
The accumulation of helium gas in crystal lattices creates blisters and
fuzzy regions, which destroys the structural integrity of the walls.

Energetic a’s that leave fusion plasmas are trapped particles executing
banana orbits and 1n principle their trajectories could be controlled so
they harmlessly strike a liquid, such a lithium on tin, not a solid wall.

Feasibility essentially unexplored
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Divertors to Carry Escaping Plasma to Pumps

The particle exhaust from plasmas must be concentrated to the loca-
tion of pumps but this concentration can make the power loading on the
walls intolerably high unless a large fraction of the power can be radi-
ated away.

Two solutions:

(1) Resonant divertor locates a chain of islands at the plasma edge.

This requires extremely accurate control of the edge transform, L.

(2) Non-resonant divertor uses the Hamiltonian mechanics concepts
of Cantori and turnstiles.

Beyond the outermost confining magnetic surface, a double magnetic
flux tube is formed (1/2 the flux comes in and 1/2 goes out), which strikes
the wall at a remarkably robust location.

W7-X has a resonant divertor; non-resonant divertors relatively
unexplored.
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