* partially supported by Simons Foundation
R
The gap between a recently developed dynamical version of relaxed magnetohydrodynamics (RxMHD) and ideal MHD (IMHD) is bridged by approximating the zero-resistivity "Ideal" Ohm's Law (IOL) constraint using an augmented Lagrangian method borrowed from optimization theory. The augmentation combines a pointwise vector Lagrange multiplier method…
We describe a method to construct smooth and compactly supported solutions of 3D incompressible Euler equations and related models. The method is based on localizable Grad-Shafranov equations and is inspired by the recent result.
Deuterium-tritium (DT) burning requires a long energy confinement times compared to collision times, so the particle distribution functions must approximate local-Maxwellians. Non-equilibrium thermodynamics is applicable, which gives relations among transport, entropy production, the collision frequency, and the deviation from a Maxwellian. The…
As a step toward understanding 3D magnetohydrodynamic (MHD) equilibria, for which smooth solutions may not exist, we develop a simple cylindrical model to investigate the resistive stability of MHD equilibria with alternating regions of constant and nonuniform pressure, producing states with continuous total pressure (i.e., no singular current…