* partially supported by Simons Foundation
D
Differential forms provide a coordinate-free way to express many quantities and relations in mathematical physics. In particular, they are useful in plasma physics. This tutorial gives a guide so that you can read the plasma physics literature that uses them and apply them yourself.
The confinement of guiding center trajectories in a stellarator is determined by the variation of the magnetic field strength B in Boozer coordinates (r,θ,φ), but B(r,θ,φ) depends on the flux surface shape in a complicated way. Here we derive equations relating B(r,θ,φ) in Boozer coordinates and the…
Quasisymmetric stellarators are appealing intellectually and as fusion reactor candidates since the guiding center particle trajectories and neoclassical transport are isomorphic to those in a tokamak, implying good confinement. Previously, quasisymmetric magnetic fields have been identified by applying black-box optimization algorithms to…
The condition of omnigenity is investigated, and applied to the near-axis expansion of Garren and Boozer (1991a). Due in part to the particular analyticity requirements of the near-axis expansion, we find that, excluding quasi-symmetric solutions, only one type of omnigenity, namely quasi-isodynamicity, can be satisfied at first order in the…
It is shown that the variational principle of multi-region relaxed magnetohydrodynamics (MRxMHD) can be used to predict the stability and nonlinear saturation of tearing modes in strong guide field configurations without resolving the dynamics and without explicit dependence on the plasma resistivity. While the magnetic helicity is not a good…