Publications

* partially supported by Simons Foundation

107 Publications
2018

The confinement of guiding center trajectories in a stellarator is determined by the variation of the magnetic field strength B in Boozer coordinates (r,θ,φ), but B(r,θ,φ) depends on the flux surface shape in a complicated way. Here we derive equations relating B(r,θ,φ) in Boozer coordinates and the…

* Partially Supported
2018

Recently designed optimized stellarator experiments have suffered from very tight construction tolerances, but some level of deviation of the coil system is unavoidable during fabrication of the coils and assembly of the coil system. In this paper, we present a new approach that incorporates reduced sensitivity to construction tolerances of…

Fully Supported
2019

Analytic scaling relations are derived for a phenomenological model of the plasmoid instability in an evolving current sheet, including the effects of reconnection outflow. Two scenarios are considered, where the plasmoid instability can be triggered either by an injected initial perturbation or by the natural noise of the system (here…

Keywords
* Partially Supported
2019

The condition of omnigenity is investigated, and applied to the near-axis expansion of Garren and Boozer (1991a). Due in part to the particular analyticity requirements of the near-axis expansion, we find that, excluding quasi-symmetric solutions, only one type of omnigenity, namely quasi-isodynamicity, can be satisfied at first order in the…

Keywords
* Partially Supported
2019

A method is given to rapidly compute quasisymmetric stellarator magnetic fields for plasma confinement, without the need to call a three-dimensional magnetohydrodynamic equilibrium code inside an optimization iteration. The method is based on direct solution of the equations of magnetohydrodynamic equilibrium and quasisymmetry using Garren and…

* Partially Supported
2019

We present a boundary integral equation solver for computing Taylor relaxed states in non-axisymmetric solid and shell-like toroidal geometries. The computation of Taylor states in these geometries is a key element for the calculation of stepped pressure stellarator equilibria. The integral representation of the magnetic field in this work is…

* Partially Supported
2019

Most quasisymmetric stellarators to date have been designed by numerically optimizing the plasma boundary shape to minimize symmetry-breaking Fourier modes of the magnetic field strength B. At high aspect ratio, a faster approach is to directly construct the plasma shape from the equations of quasisymmetry near the magnetic axis derived…

Fully Supported