* partially supported by Simons Foundation
Recently designed optimized stellarator experiments have suffered from very tight construction tolerances, but some level of deviation of the coil system is unavoidable during fabrication of the coils and assembly of the coil system. In this paper, we present a new approach that incorporates reduced sensitivity to construction tolerances of…
The confinement of guiding center trajectories in a stellarator is determined by the variation of the magnetic field strength B in Boozer coordinates (r,θ,φ), but B(r,θ,φ) depends on the flux surface shape in a complicated way. Here we derive equations relating B(r,θ,φ) in Boozer coordinates and the…
As a step toward understanding 3D magnetohydrodynamic (MHD) equilibria, for which smooth solutions may not exist, we develop a simple cylindrical model to investigate the resistive stability of MHD equilibria with alternating regions of constant and nonuniform pressure, producing states with continuous total pressure (i.e., no singular current…
A method is presented to establish regions of phase space for 3D vector fields through which pass no co-oriented invariant 2D submanifolds transverse to a given oriented 1D foliation. Refinements are given for the cases of volume-preserving or Cartan–Arnol’d Hamiltonian flows and for boundaryless submanifolds.
We describe a method to construct smooth and compactly supported solutions of 3D incompressible Euler equations and related models. The method is based on localizable Grad-Shafranov equations and is inspired by the recent result.
Quasisymmetric stellarators are appealing intellectually and as fusion reactor candidates since the guiding center particle trajectories and neoclassical transport are isomorphic to those in a tokamak, implying good confinement. Previously, quasisymmetric magnetic fields have been identified by applying black-box optimization algorithms to…
Most quasisymmetric stellarators to date have been designed by numerically optimizing the plasma boundary shape to minimize symmetry-breaking Fourier modes of the magnetic field strength B. At high aspect ratio, a faster approach is to directly construct the plasma shape from the equations of quasisymmetry near the magnetic axis derived…