Integrability, Normal Forms and Magnetic Axis Coordinates*

Publication Year



Integrable or near-integrable magnetic fields are prominent in the design of plasma confinement devices. Such a field is characterized by the existence of a singular foliation consisting entirely of invariant submanifolds. A regular leaf, known as a flux surface,of this foliation must be diffeomorphic to the two-torus. In a neighborhood of a flux surface, it is known that the magnetic field admits several exact, smooth normal forms in which the field lines are straight. However, these normal forms break down near singular leaves including elliptic and hyperbolic magnetic axes. In this paper, the existence of exact, smooth normal forms for integrable magnetic fields near elliptic and hyperbolic magnetic axes is established. In the elliptic case, smooth near-axis Hamada and Boozer coordinates are defined and constructed. Ultimately, these results establish previously conjectured smoothness properties for smooth solutions of the magnetohydrodynamic equilibrium equations. The key arguments are a consequence of a geometric reframing of integrability and magnetic fields; that they are presymplectic systems.

Publication Status
In Press
Date Published
Type of Article
Mathematical Physics
Short Title
Integrability, normal forms, and magnetic axis coordinates