Improved performance of stellarator coil design optimization *

Publication Year
2020
Abstract

Following up on earlier work which demonstrated an improved numerical stellarator coil design optimization performance by the use of stochastic optimization (Lobsien et al., Nucl. Fusion, vol. 58 (10), 2018, 106013), it is demonstrated here that significant further improvements can be made – lower field errors and improved robustness – for a Wendelstein 7-X test case. This is done by increasing the sample size and applying fully three-dimensional perturbations, but most importantly, by changing the design sequence in which the optimization targets are applied: optimization for field error is conducted first, with coil shape penalties only added to the objective function at a later step in the design process. A robust, feasible coil configuration with a local maximum field error of 3.66 % and an average field error of 0.95 % is achieved here, as compared to a maximum local field error of 6.08 % and average field error of 1.56 % found in our earlier work. These new results are compared to those found without stochastic optimization using the FOCUS and ONSET suites. The relationship between local minima in the optimization space and coil shape penalties is also discussed.

Journal
Journal of Plasma Physics
Volume
86
Issue
Volume 86, Issue 2
Pages
815860202
Date Published
04/2020