* partially supported by Simons Foundation
Adjoint methods can speed up stellarator optimisation by providing gradient information more efficiently compared with finite-difference evaluations. Adjoint methods are herein applied to vacuum magnetic fields, with objective functions targeting quasi-symmetry and a rotational transform value on a surface. To measure quasi-symmetry, a novel…
In a strong, inhomogeneous magnetic field, charged particle dynamics may be studied in the guiding-centre approximation, which is known to be Hamiltonian. When the magnetic field is quasisymmetric, the first-order guiding-centre (FGC) Hamiltonian structure admits a continuous symmetry, and therefore a conserved quantity in addition to the…
In a strong, inhomogeneous magnetic field, charged particle dynamics may be studied in the guiding-centre approximation, which is known to be Hamiltonian. When the magnetic field is quasisymmetric, the first-order guiding-centre (FGC) Hamiltonian structure admits a continuous symmetry, and therefore a conserved quantity in addition to the…
A first-principles method to calculate the critical temperature gradient for the onset of the ion-temperature-gradient mode (ITG) in linear gyrokinetics is presented. We find that conventional notions of the connection length previously invoked in tokamak research should be revised and replaced by a generalized correlation length to explain…
Combined plasma–coil optimization approaches for designing stellarators are discussed and a new method for calculating free-boundary equilibria for multiregion relaxed magnetohydrodynmics (MRxMHD) is proposed. Four distinct categories of stellarator optimization, two of which are novel approaches, are the fixed-boundary optimization, the…
Over the last decade, a variational principle based on a generalisation of Taylor’s relaxation, referred to as multi-region relaxed magnetohydrodynamics (MRxMHDs) has been developed. The numerical solutions of the MRxMHD equilibria have been constructed using the Stepped Pressure Equilibrium Code (SPEC) (Hudson et al 2012 Phys. Plasmas 19…
The stellarator as a concept of magnetic confinement fusion requires careful design to confine particles effectively. A design possibility is to equip the magnetic field with a property known as quasisymmetry. Though it is generally believed that a steady-state quasisymmetric equilibrium can only be exact locally (unless the…
A method is given to rapidly compute quasisymmetric stellarator magnetic fields for plasma confinement, without the need to call a three-dimensional magnetohydrodynamic equilibrium code inside an optimization iteration. The method is based on direct solution of the equations of magnetohydrodynamic equilibrium and quasisymmetry using Garren and…
The numerical solution of the stepped pressure equilibrium (Hudson et al 2012 Phys. Plasmas 19 112502) requires a fast and robust solver to obtain the Beltrami field in three-dimensional geometry such as stellarators. The spectral method implemented in the stepped pressure equilibrium code (SPEC) is efficient when the domain is a hollow torus,…
This paper describes a new and efficient method of defining an annular region of a curl-free magnetic field with specific physics and coil properties that can be used in stellarator design. Three statements define the importance: (1) Codes can follow an optimized curl-free initial state to a final full-pressure equilibrium. The large size of…
Differential forms provide a coordinate-free way to express many quantities and relations in mathematical physics. In particular, they are useful in plasma physics. This tutorial gives a guide so that you can read the plasma physics literature that uses them and apply them yourself.
The confinement of guiding center trajectories in a stellarator is determined by the variation of the magnetic field strength B in Boozer coordinates (r,θ,φ), but B(r,θ,φ) depends on the flux surface shape in a complicated way. Here we derive equations relating B(r,θ,φ) in Boozer coordinates and the…
Quasisymmetric stellarators are appealing intellectually and as fusion reactor candidates since the guiding center particle trajectories and neoclassical transport are isomorphic to those in a tokamak, implying good confinement. Previously, quasisymmetric magnetic fields have been identified by applying black-box optimization algorithms to…
The condition of omnigenity is investigated, and applied to the near-axis expansion of Garren and Boozer (1991a). Due in part to the particular analyticity requirements of the near-axis expansion, we find that, excluding quasi-symmetric solutions, only one type of omnigenity, namely quasi-isodynamicity, can be satisfied at first order in the…