Magnetic confinement of charged particles

Thomas Sunn Pedersen
Max-Planck Institute for Plasma Physics and University of Greifswald, Germany

Overview

- Motivation for studying single particle orbits in magnetic fields
- Motion in a straight uniform B-field (basic review)
-The guiding center approximation
- Motion including a static electric field, or gravity
- Motion in inhomogeneous and bent B-fields and the first adiabatic invariant
- Mirror confinement
-Time variation (no derivation)

The need for magnetic field confinement

-The easiest fusion process to reach is D-T fusion
-This requires particle kinetic energies in the range 10-100 keV

- Even at the particle energy of peak D-T fusion reactivity, non-fusion collisions (scattering) dominate over the fusion collisions by two orders of magnitude
- Must confine plasma at T>10 keV (~120 M Kelvin) for many collisions
-Thermal speed of D and T is on the order of $10^{6} \mathrm{~m} / \mathrm{s}$ at these temperatures (and even higher for electrons) - $\mu \mathrm{s}$ confinement if you have no confining field?
-Electric fields alone won't work: Confine only one species
- Magnetic fields may work (must be bent!)
- Gravity works on the sun, but not on Earth

Charged particle motion in a straight magnetic field

- A charged particle performs a screw-like path if it is confined by a straight uniform magnetic field and it feels no other forces
- Start with Newton's $2^{\text {nd }}$ law and the Lorentz force:

$$
\begin{aligned}
& \vec{F}=m \vec{a}=q \vec{v} \times \vec{B} \\
& \vec{B}=B_{0} \hat{z}
\end{aligned}
$$

- \vec{B}

Charged particle motion in a straight magnetic field

- Newton's $2^{\text {nd }}$ law written coordinate by coordinate:

$$
\begin{aligned}
\vec{F}=m \vec{a} & =q \vec{v} \times \vec{B} \Rightarrow \\
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m} v_{x} \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

Charged particle motion in a straight magnetic field

- Newton's $2^{\text {nd }}$ law written coordinate by coordinate:
- $\mathrm{qB}_{0} / \mathrm{m}$ is an inverse time scale

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m} v_{x} \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

Charged particle motion in a straight magnetic field

- $\mathrm{qB}_{0} / \mathrm{m}$ is an inverse time scale: give it it's own symbol

$$
\begin{aligned}
& \frac{d v_{x}}{d t}=\omega_{c} v_{y} \\
& \frac{d v_{y}}{d t}=-\omega_{c} v_{x} \\
& \frac{d v_{z}}{d t}=0 \\
& \omega_{c}=\frac{q B_{0}}{m}-\text { sometimes } \omega_{c}=\frac{|q| B_{0}}{m}
\end{aligned}
$$

Charged particle motion in a straight magnetic field

- Decouple v_{x} and v_{y} equations:

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{d v_{x}}{d t}=\omega_{c} v_{y}\right] \\
& \frac{d v_{y}}{d t}=-\omega_{c} v_{x} \\
& \frac{d v_{z}}{d t}=0 \\
& \omega_{c}=\frac{q B_{0}}{m}-\text { sometimes } \omega_{c}=\frac{|q| B_{0}}{m}
\end{aligned}
$$

Charged particle motion in a straight magnetic field

- Eliminate v_{y} from v_{x} equation by differentiation and substitution
$-\mathrm{V}_{\mathrm{z}}$ equation is trivial

$$
\left.\begin{array}{l}
\frac{d^{2} v_{x}}{d t^{2}}=\omega_{c} \frac{d v_{y}}{d t} \\
\frac{d v_{y}}{d t}=-\omega_{c} v_{x}
\end{array}\right\} \Rightarrow \frac{d^{2} v_{x}}{d t^{2}}=-\omega_{c}^{2} v_{x} .
$$

Charged particle motion in a straight magnetic field

- Eliminate v_{y} from v_{x} equation by differentiation and substitution:

$$
\left.\begin{array}{c}
\frac{d v_{x}}{d t}=\omega_{c} v_{y} \\
\frac{d v_{y}}{d t}=-\omega_{c} v_{x}
\end{array}\right\} \Rightarrow \frac{d^{2} v_{x}}{d t^{2}}=-\omega_{c}^{2} v_{x}
$$

-We recognize the simple harmonic oscillator for v_{x}

- Find v_{y} by differentiation
- V_{z} equation is trivial:

$$
\begin{aligned}
& \frac{d v_{z}}{d t}=0 \Rightarrow v_{z}=\text { constant }=\mathrm{v}_{\|} \\
& \omega_{c}^{2}=\left(\frac{q B_{0}}{\text { Lect } m^{\prime}}\right)^{2} \\
& \text { on guiding center approximation }
\end{aligned}
$$

Charged particle motion in a straight magnetic field

- Eliminate v_{y} from v_{x} equation by differentiation and substitution:

$$
\left.\begin{array}{l}
\frac{d v_{x}}{d t}=\omega_{c} v_{y} \\
\frac{d v_{y}}{d t}=-\omega_{c} v_{x}
\end{array}\right\} \Rightarrow \begin{aligned}
& \frac{d^{2} v_{x}}{d t^{2}}=-\omega_{c}^{2} v_{x} \\
& v_{y}=\frac{1}{\omega_{c}} \frac{d v_{x}}{d t}
\end{aligned}
$$

-We recognize the simple harmonic oscillator for v_{x}

- Find v_{y} by differentiation
- V_{z} equation is trivial:

$$
\begin{aligned}
& \frac{d v_{z}}{d t}=0 \Rightarrow v_{z}=\text { constant }=\mathrm{V}_{\|} \\
& \omega_{c}^{2}=\left(\frac{q B_{0}}{\text { Lect } \boldsymbol{m}{ }^{\text {on guiding center approximation }}}\right)^{2}
\end{aligned}
$$

Charged particle motion in a straight magnetic field

- Velocity components:

$$
\begin{aligned}
& v_{x}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \\
& v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \\
& v_{z}=v_{\|} \\
& \omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2}
\end{aligned}
$$

- Next step: integrate to get position

Charged particle motion in a straight magnetic field

- Integrate in time to get position
-Define Larmor radius and guiding center:

$$
\begin{aligned}
& v_{x}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \Rightarrow x=x_{g c}+\frac{v_{\perp}}{\omega_{c}} \sin \left(\omega_{c} t+\delta\right) \\
& v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \Rightarrow y=y_{g c}+\frac{v_{\perp}}{\omega_{c}} \cos \left(\omega_{c} t+\delta\right) \\
& v_{z}=\mathrm{v}_{\|} \Rightarrow z=z_{0}+\mathrm{v}_{\|} t \\
& \omega_{c}=\frac{q B_{0}}{m} \text { (cyclotron frequency), } \mathrm{f}_{\mathrm{c}}=\omega_{c} / 2 \pi \\
& \mathrm{r}_{\mathrm{L}}=\left|\frac{v_{\perp}}{\omega_{c}}\right|=\left|\frac{m v_{\perp}}{q B_{0}}\right| \text { (Larmor radius, gyroradius) }
\end{aligned}
$$

The guiding center approximation:

- If the Larmor radius is on the order of the size of the confining field, then only collisionless orbits are confined:
- After a collision, the particle will have a new guiding center, about one Larmor radius away from the original guiding center
- If this new Larmor orbit intersects material walls or extends to regions of much lower B-field, the particle is not confined
- In order to confine charged particles magnetically for many collision times, the Larmor radius must be small!
-When the Larmor radius is small, and the cyclotron frequency is large:
- one can derive analytic formulas for the time evolution of the guiding center ($\mathrm{x}_{\mathrm{gc}}, \mathrm{y}_{\mathrm{gc}}, \mathrm{z}$), averaging over the gyration

$$
r_{L} \ll B / \nabla B \text { and } \omega_{c} \gg \frac{\partial B}{\partial t} \frac{1}{B}(*)
$$

The guiding center approximation is often necessary:

- For a 1 eV electron in a $\mathrm{B}=1 \mathrm{~T}$ field, the cyclotron frequency is large and the Larmor radius small:

$$
\begin{aligned}
& \omega_{c} \approx 1.8 \times 10^{11} s^{-1} \\
& r_{L} \approx 3 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

- Just to follow the electron for one microsecond requires $>10^{6}$ time steps if a simple numerical scheme is used.
-Almost the full computational effort is spent calculating the circular motion....
- Averaging over the gyromotion allows fast and accurate calculations of the motion of charged particles in a magnetic field, both analytic and numerical
- Essentially, the gyrating particle is replaced by a charged (q), massive (m) ring of current $\left(I=e \omega_{c} / 2 \pi\right)$, with its center at the particle's gyrocenter.
- We will do this for a few important cases in the following:

ExB drift

- Since particles are charged, the electric field naturally enters the equations (collective phenomena, external confining fields, single particle Coulomb interactions)
- Electric field component along B gives simple acceleration or deceleration
- Electric field component perpendicular to B is more interesting:
-Example below: Electron $\quad r_{L}=\frac{v_{\perp}}{\omega_{c}}$
- $\stackrel{\rightharpoonup}{\boldsymbol{\varepsilon}} \vec{\epsilon}_{\vec{e}}$
- Net effect is a motion in the ExB direction which has a steady state component
- Let's calculate this drift:

ExB drift

- Newton's $2^{\text {nd }}$ law written coordinate by coordinate (again)
- Let's add an electric field now

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m} v_{x} \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m} v_{x}+\frac{q}{m} E_{y} \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

${ }^{-} \mathrm{E}_{\mathrm{y}} / \mathrm{B}_{0}$ is a velocity, v_{E}; it is constant since we assumed E and B constant.

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m}\left(v_{x}-\frac{E_{y}}{B_{0}}\right) \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

${ }^{-} \mathrm{E}_{\mathrm{y}} / \mathrm{B}_{0}$ is a velocity, v_{E}; it is constant since we assumed E and B constant.

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m}\left(v_{x}-v_{E}\right) \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

ExB drift

$\bullet E / B$ is a velocity, v_{E}, it is constant since we assumed E and B constant.

- Since v_{E} is constant, we can subtract it inside the d / dt of x -equation

$$
\begin{aligned}
& \frac{d\left(v_{x}-v_{E}\right)}{d t}=\frac{q B_{0}}{m} v_{y} \\
& \frac{d v_{y}}{d t}=-\frac{q B_{0}}{m}\left(v_{x}-v_{E}\right) \\
& \frac{d v_{z}}{d t}=0
\end{aligned}
$$

ExB drift

$\bullet E / B$ is a velocity, v_{E}; it is constant since we assumed E and B constant.

- Since v_{E} is constant, we can subtract it inside the d / dt of x -equation

$$
\begin{aligned}
& \frac{d\left(v_{x}-v_{E}\right)}{d t}=\frac{q B_{0}}{m} v_{y} \\
& \frac{d v_{y}}{d t}=-\frac{q B_{0}}{m}\left(v_{x}-v_{E}\right) \\
& \frac{d v_{z}}{d t}=0
\end{aligned}
$$

Now

ExB drift

$\bullet E / B$ is a velocity, v_{E}; it is constant since we assumed E and B constant.

- Since v_{E} is constant, we can subtract it inside the d / dt of x -equation

$$
\begin{aligned}
& \frac{d\left(v_{x}-v_{E}\right)}{d t}=\frac{q B_{0}}{m} v_{y} \\
& \frac{d v_{y}}{d t}=-\frac{q B_{0}}{m}\left(v_{x}-v_{E}\right) \\
& \frac{d v_{z}}{d t}=0
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m} v_{x} \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

Before

- It's clear we have the same equation as before, just replacing v_{x} by $\mathrm{v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{E}}$

$$
\begin{aligned}
& \frac{d\left(v_{x}-v_{E}\right)}{d t}=\frac{q B_{0}}{m} v_{y} \\
& \frac{d v_{y}}{d t}=-\frac{q B_{0}}{m}\left(v_{x}-v_{E}\right) \\
& \frac{d v_{z}}{d t}=0
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q B_{0}}{m} v_{y} \\
\frac{d v_{y}}{d t} & =-\frac{q B_{0}}{m} v_{x} \\
\frac{d v_{z}}{d t} & =0
\end{aligned}
$$

Before

ExB drift

- It's clear we have the same equation as before, just replacing v_{x} by $\mathrm{v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{E}}$

$$
\begin{aligned}
& v_{x}-v_{E}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \\
& v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \\
& v_{z}=\mathrm{v}_{\|} \\
& \omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v_{x}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \\
& v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \\
& v_{z}=\mathrm{v}_{\|} \\
& \omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2}
\end{aligned}
$$

Before

ExB drift

- It's clear we have the same equation as before, just replacing v_{x} by $\mathrm{v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{E}}$

$$
\begin{array}{ll}
v_{x}=v_{E}+v_{\perp} \cos \left(\omega_{c} t+\delta\right) & v_{x}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \\
v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) & v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \\
v_{z}=\mathrm{v}_{\|} & v_{z}=\mathrm{v}_{\|} \\
\omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2} & \omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2}
\end{array}
$$

Now
Before

ExB drift

- It's clear we have the same equation as before, just replacing v_{x} by $\mathrm{v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{E}}$

$$
\begin{array}{ll}
v_{x}=v_{E}+v_{\perp} \cos \left(\omega_{c} t+\delta\right) & v_{x}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \\
v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) & v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \\
v_{z}=\mathrm{v}_{\|} & v_{z}=\mathrm{v}_{\|} \\
\omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2} & \omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2}
\end{array}
$$

Now
Before

ExB drift

- It's clear we have the same equation as before, just replacing v_{x} by $\mathrm{v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{E}}$

$$
\begin{array}{ll}
v_{x}=\frac{E_{y}}{B_{0}}+v_{\perp} \cos \left(\omega_{c} t+\delta\right) & v_{x}=v_{\perp} \cos \left(\omega_{c} t+\delta\right) \\
v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) & v_{y}=-v_{\perp} \sin \left(\omega_{c} t+\delta\right) \\
v_{z}=\mathrm{v}_{\|} & v_{z}=\mathrm{v}_{\|} \\
\omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2} & \omega_{c}^{2}=\left(\frac{q B_{0}}{m}\right)^{2} \\
\text { Now } & \text { Before }
\end{array}
$$

ExB drift: Coordinate-free formulation

- For situations with constant uniform E and B fields, we can always define a local coordinate system where z is in the B-field direction and y is in the direction of the component of E perpendicular to B; hence, our derivation is valid in any coordinate system. The coordinate free formula for V_{E} is:

$$
\vec{v}_{E}=\frac{\vec{E} \times \vec{B}}{B^{2}}=-\frac{\nabla \phi \times \vec{B}}{B^{2}}
$$

-The drift is independent of the particle! No reference to q or m
-Same for ions and electrons
-The drift goes along constant ϕ surfaces - does not change the electrostatic energy of the particle

ExB drift: Coordinate-free derivation

- We can also prove that the particles ExB drift without using coordinates

$$
\vec{v}_{E}=\frac{\vec{E} \times \vec{B}}{B^{2}}=-\frac{\nabla \phi \times \vec{B}}{B^{2}}
$$

-We know what we are looking for: $\overrightarrow{\mathrm{v}}_{\perp}=\vec{v}_{g}+\vec{v}_{E}$

$$
\begin{aligned}
& m \frac{d \vec{v}}{d t}=q\left(\overrightarrow{E_{\perp}}+\vec{v} \times \vec{B}\right) \Rightarrow m \frac{d \vec{v}_{\perp}}{d t}=q\left(\overrightarrow{E_{\perp}}+\vec{v}_{E} \times \vec{B}+\vec{v}_{g}\right) \\
& =q\left(\overrightarrow{E_{\perp}}+(\vec{E} \times \vec{B}) \times \frac{\vec{B}}{B^{2}}+\vec{v}_{g}\right)=q \vec{v}_{g} \times \vec{B} \Leftrightarrow m \frac{d \vec{v}_{g}}{d t}=q \vec{v}_{g} \times \vec{B}
\end{aligned}
$$

ExB drift

$$
\vec{v}_{E}=\frac{\vec{E} \times \vec{B}}{B^{2}}=-\frac{\nabla \phi \times \vec{B}}{B^{2}}
$$

-The drift is independent of the particle! There is no reference to q or m

- Same for ions and electrons, pions, all charged particles....why?

Answer: In the inertial frame that moves at the ExB velocity, there is no E-field!

$$
E^{\prime}=\gamma(\vec{E}+\vec{v} \times \vec{B})+(1-\gamma) \frac{\vec{v} \cdot \vec{E}}{v^{2}} \vec{v}=
$$

Lorentz transform:

$$
\gamma\left(\vec{E}+\frac{\vec{E} \times \vec{B}}{B^{2}} \times \vec{B}\right)=\gamma(\vec{E}-\vec{E})=0
$$

- A charged particle therefore performs simple cyclotron motion in that frame (as long as $\mathrm{v}_{\mathrm{E}}=\mathrm{E} / \mathrm{B}<\mathrm{c}$)
-Exercise: What happens when $E / B>C$?

FxB drift

-The derivation we did only used Newton's $2^{\text {nd }}$ law - no reference to the Lorentz transform or Maxwell's equations
-(then afterwards it was realized that we could have used Lorentz)

- But this is actually an advantage: Our derivation can be trivially extended to any other constant perpendicular force acting on our particle:

$$
\begin{aligned}
& \vec{v}_{E}=\frac{\vec{E} \times \vec{B}}{B^{2}} \\
& \vec{v}_{F}=\frac{\vec{F} \times \vec{B}}{q B^{2}}
\end{aligned}
$$

-The general force drift cares about the particle's charge, as one would expect. Example F=mg leads to a gravitational drift in opposite directions for electrons and ions.

- In some traps, the magnetic field is non-uniform
-We assumed B straight and uniform
-What happens when (for example) the B-field strength changes
spatially?
- In some traps, the magnetic field is non-uniform
-We assumed B straight and uniform
-What happens when (for example) the B-field strength changes
spatially?
- Assume for simplicity here: B-field is straight but increases in strength
$\odot \vec{B} \quad \downarrow \vec{\nabla} B$
- One can derive this drift by Taylor expanding the B-field, taking advantage of the smallness of the Larmor radius (keeping only $1^{\text {st }}$ order terms)

$$
\begin{aligned}
& B_{z}(x, y, z)=B_{0}+\frac{\partial B_{z}}{\partial y}\left(y-y_{g c}\right)+O\left(\varepsilon^{2}\right) \\
& \varepsilon=\left|\frac{\nabla B}{B}\right| r_{L} \ll 1
\end{aligned}
$$

-百 $\downarrow^{\overrightarrow{7} B}$

Adiabatic invariants

- Instead of Taylor expanding, it is also possible to derive this drift much faster by introducing the first adiabatic invariant μ :
-This invariant is very useful in several contexts
- Background:
-The concept of adiabatic invariants is known from analytic mechanics
- Assume a particle performs periodic motion in one coordinate q
-Then one can define the action as: $\oint p_{q} d q$
- Here p_{q} is the generalized momentum associated with q
- If one perturbs the periodic motion by a small amount ε, the action remains conserved, to all powers in ε
-We have already one periodic motion - the gyration. The coordinate for the gyration is θ, and $p_{\theta}=m v_{\theta} r$ is the associated generalized momentum (we recognize it's just the angular momentum in the gyration)

The first adiabatic invariant

$$
\begin{aligned}
& \oint p_{q} d q=\int_{0}^{2 \pi} m v_{\theta} r d \theta=\int_{0}^{2 \pi} m v_{\perp} r_{L} d \theta=2 \pi m v_{\perp} r_{L}= \\
& 2 \pi m v_{\perp} \frac{m v_{\perp}}{q B}=\frac{4 \pi m}{q} \frac{\frac{1}{2} m v_{\perp}^{2}}{B}=\mathrm{constant} \\
& \text { so } \mu=\frac{\frac{1}{2} m v_{\perp}^{2}}{B}=\text { constant }
\end{aligned}
$$

$\bullet \mu$ is conserved - it is actually the magnetic dipole moment of the charged particle, if we consider the particle as a charged current ring with radius r_{L}

$$
I A=\frac{q \omega_{c}}{2 \pi} \pi r_{L}^{2}=\frac{q^{2} B}{2 \pi m} \pi\left(\frac{m v_{\perp}}{q B}\right)^{2}=\frac{m v_{\perp}^{2}}{2 B}=\mu
$$

The first adiabatic invariant is the dipole moment

$$
I A=\frac{q \omega_{c}}{2 \pi} \pi r_{L}^{2}=\frac{q^{2} B}{2 \pi m} \pi\left(\frac{m v_{\perp}}{q B}\right)^{2}=\frac{m v_{\perp}^{2}}{2 B}=\mu
$$

-This magnetic dipole is anti-aligned with the magnetic field (a plasma is diamagnetic)

- A magnetic dipole with strength μ embedded in a magnetic field B antialigned to the dipole has potential energy $\mu \mathrm{B}$, so it feels a force

This is the so-called mirror force $\quad \vec{F}=-\mu \nabla B$
This force also works for neutral particles as long as they have a magnetic dipole moment (Example: Antihydrogen)

If the force is along B, it can provide some confinement along the field lines for charged particles - they can be reflected by a magnetic mirror
(Mirror confinement was attempted for fusion but is not pursued much these days)

If the force is perpendicular to B, then we get a drift
-We use now the FxB formula we derived earlier:

$$
\begin{aligned}
& \vec{F}=-\mu \nabla B=-\mu \frac{d B_{z}}{d y} \hat{y} \\
& \vec{v}_{\nabla B}=\frac{\vec{F} \times \vec{B}}{q B^{2}}=\frac{-\mu \nabla B \times \vec{B}}{q B^{2}}=\frac{m v_{\perp}^{2} \vec{B} \times \nabla B}{2 B} \frac{\square B^{2}}{q \vec{\nabla} B}
\end{aligned}
$$

Non-uniform B-field direction: Curvature drift

- If the magnetic field strength is inhomogeneous, the magnetic field is usually also curved
- It has to be curved if it's inhomogeneous, unless you have significant currents
- In the guiding center approximation, the zeroth order motion is along the magnetic field.
- So if the magnetic field is curved, the particle feels a centrifugal force:

$$
\begin{aligned}
& \vec{F}_{C}=\frac{m v_{\|}^{2}}{R_{C}} \frac{\vec{R}_{C}}{R_{C}} \\
& \vec{v}_{R_{C}}=\frac{\vec{F}_{C} \times \vec{B}}{q B^{2}}=\frac{m v_{\|}^{2}}{R_{C}^{2}} \frac{\vec{R}_{C} \times \vec{B}}{q B^{2}}
\end{aligned}
$$

Combining the two drifts

- With a bit of algebra, we can combine the grad B and curvature drifts into one formula - assuming that the current density is negligible. This is not universally true but often enough that it is useful to derive this combined formula.

$$
\begin{gathered}
\nabla \times \vec{B}=\mu_{0} \vec{j}=0 \\
\nabla \cdot \vec{B}=0
\end{gathered}
$$

- If the magnetic field has curvature, we can go into a local cylindrical coordinate system with the axis given by the axis for the radius of curvature (blackboard). In that coordinate system:

$$
\vec{B}=B_{r}(r, \theta, z) \hat{r}+B_{\theta}(r, \theta, z) \hat{\theta}+B_{z}(r, \theta, z) \hat{z}=B_{\theta}(r, \theta, z) \hat{\theta}=B_{\theta}(r, \theta) \hat{\theta}
$$

Combining the two drifts

$$
\vec{B}=B_{r}(r, \theta, z) \hat{r}+B_{\theta}(r, \theta, z) \hat{\theta}+B_{z}(r, \theta, z) \hat{z}=B_{\theta}(r, \theta, z) \hat{\theta}=B_{\theta}(r, \theta) \hat{\theta}
$$

- We need Goldston and Rutherford (or another formula book) to write the differential operators in cylindrical coordinates:

$$
\nabla \cdot \vec{B}=0 \Rightarrow \frac{1}{r} \frac{\partial\left(r B_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}+\frac{\partial B_{z}}{\partial z}=0 \Rightarrow \frac{\partial B_{\theta}}{\partial \theta}=0 \Rightarrow \vec{B}=B_{\theta}(r) \hat{\theta}
$$

-This helps us significantly simplify the curl equation, which is otherwise terribly complicated:

$$
\begin{gathered}
\nabla \times \vec{B}=\frac{1}{r}\left(\frac{\partial B_{z}}{\partial \theta}-\frac{\partial B_{\theta}}{\partial z}\right) \hat{r}+\left(\frac{\partial B_{r}}{\partial z}-\frac{\partial B_{z}}{\partial r}\right) \hat{\theta}+\frac{1}{r}\left(\frac{\partial\left(r B_{\theta}\right)}{\partial r}-\frac{\partial B_{r}}{\partial \theta}\right) \hat{z} \\
\nabla \times \vec{B}=\frac{1}{r}\left(\frac{\partial\left(r B_{\theta}\right)}{\partial r}\right) \hat{z}=0 \Leftrightarrow r B_{\theta}=\text { constant (c) } \\
\Leftrightarrow B_{\theta}=\frac{c}{r}
\end{gathered}
$$

Combining the two drifts

$$
\begin{aligned}
& B=B_{\theta}=\frac{c}{r} \Rightarrow \nabla B=-\frac{c}{r^{2}} r \\
& \frac{\nabla B}{B}=\frac{-\frac{c}{r^{2}} \hat{r}}{\frac{c}{r}}=\frac{-\hat{r}}{r}=\frac{-\vec{R}_{c}}{R_{c}^{2}}
\end{aligned}
$$

Combining the two drifts

-Thus, we have shown in the last few slides that:

$$
\left.\begin{array}{c}
\nabla \times \vec{B}=\mu_{0} \vec{j}=0 \\
\nabla \cdot \vec{B}=0
\end{array}\right\} \Rightarrow \frac{\nabla B}{B}=-\frac{\vec{R}_{C}}{R_{C}^{2}}
$$

-Therefore we can combine the two magnetic non-uniformity drifts into one formula:

$$
\vec{v}_{\nabla B+R_{C}}=\frac{2 m v_{\|}^{2}+m v_{\perp}^{2}}{2 B} \frac{\vec{B} \times \nabla B}{q B^{2}}
$$

-These two drifts add up - no magic cancellation
-The drifts are "slow" in general, verifying our perturbative approach:

- $E=100 \mathrm{eV}$ electron in $B=1 \mathrm{~T}$ and $\mathrm{R}_{\mathrm{C}}=1 \mathrm{~m}$:
$\bullet \mathrm{V}_{\mathrm{Rc}} \sim 100 \mathrm{~m} / \mathrm{s}$ vs $\sim 5^{*} 10^{5} \mathrm{~m} / \mathrm{s}$ free streaming velocity and $r_{\mathrm{L}} \sim 3 \mu \mathrm{~m}$

Mirror force - mirror confinement

-The mirror force $\mu \nabla B$ for a guiding center particle can also be parallel to
B, and thereby provide confinement of guiding center particles in the third direction
-This immediately brings up the question whether this is physical - how can $\vec{v} \times \vec{B}$ have a component parallel to \vec{B} ?

- Look at a particle whose guiding center is on the axis - the straight field line - of the magnetic configuration above

Mirror force for a generic situation

-The particle is in in a region of converging field lines:

$$
\begin{gathered}
B_{z}=B_{z}(z) \\
\nabla \cdot \vec{B}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{\partial B_{z}}{\partial z}+\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}=0 \Leftrightarrow \frac{\partial}{\partial r}\left(r B_{r}\right)=-r \frac{\partial B_{z}}{\partial z} \\
r B_{r}=-\frac{1}{2} r^{2} \frac{\partial B_{z}}{\partial z} \Leftrightarrow B_{r}=-\frac{1}{2} r \frac{\partial B_{z}}{\partial z} \\
\vec{F}=q \vec{v} \times \vec{B} \Rightarrow F_{z}=q v_{\theta} B_{r} \Leftrightarrow \\
F_{z}=-\frac{1}{2} q v_{\theta} r_{L} \frac{\partial B_{z}}{\partial z}=-\frac{1}{2} q v_{\perp} \frac{m v_{\perp}}{|q| B} \frac{\partial B_{z}}{\partial z}=-\mu \frac{\partial B_{z}}{\partial z}
\end{gathered}
$$

Mirror confinement (mirror-reflected particles)

- Now that we believe in the mirror force, we see that it can be used for confinement.
- We also recognize that μB is the potential energy of the guiding center particle due to its magnetic moment.
- A guiding center particle is in a potential well in a mirror device (above)
- For which particles is the potential well sufficiently deep for trapping?

Mirror confinement (mirror-reflected particles)

(

If $\mu B_{\text {max }}>\mathrm{E}_{\mathrm{k}}$ then the particle is trapped, otherwise it passes through

$$
\begin{gathered}
\mu=\frac{1}{2} m v_{\perp 0}^{2} / \mathrm{B}_{\min } \\
\frac{1}{2} \frac{m v_{\perp 0}^{2}}{B_{\min }} B_{\max }>\frac{1}{2} m v_{0}^{2} \Leftrightarrow \frac{B_{\max }}{B_{\min }}>\frac{v_{0}^{2}}{v_{\perp 0}^{2}}
\end{gathered}
$$

Mirror confinement (mirror-reflected particles)

- θ is the angle between the velocity vector and the B-field vector
- Only part of the Maxwellian is confined - there are always particles that have a small pitch angle
- The mirror ratio $\mathrm{B}_{\text {max }} / \mathrm{B}_{\text {min }}$ is limited by available magnet technology and by needing a minimum (!) $B_{\text {min }}$ so the particles are confined in the long region
- The trapped particles perform a periodic motion in the parallel direction giving rise to a second adiabatic invariant $\mathrm{J}=\oint_{0}^{L} v_{\| \mid} d z$
- An electrostatic potential can add (or subtract) to the potential well: $q \phi+\mu B$
- For uniform B (mirror ratio 1) we must use an electrostatic potential: Penning trap

The parallel Larmor radius

- For the magnetic moment to be conserved, the gyration needs to be a nearly periodic motion. We earlier required that the Larmor radius be small compared to the distance over which the B-field changes:

$$
\frac{B}{|\nabla B|} \gg r_{L}=\frac{m v_{\perp}}{q B}
$$

-We clearly must require also that the particle does not move into a region with a substantially different magnetic field (direction or strength) in a single gyration.

$$
\frac{B}{|\nabla B|} \gg \frac{2 \pi v_{\|}}{\omega_{c}}=2 \pi \frac{m v_{\|}}{q B}=2 \pi r_{L \|}
$$

-Thus, the "parallel Larmor radius" must also be small compared to the characteristic scale length over which B changes

Time varying fields

- One can show that μ is conserved also when $\mathrm{dB} / \mathrm{dt}$ is nonzero, as long as the B field variation is small in one gyration and has no frequency component near ω_{c}
- Implies that perpendicular kinetic energy changes, which is due to E :

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

- A time varying E-field gives rise to a so-called polarization drift (in addition to an altered ExB drift):

$$
\vec{v}_{D}=\frac{m \partial \vec{E} / \partial t}{q B^{2}} \text { if } \omega \ll \omega_{c}
$$

- For $\omega=\omega_{c}$ there is no μ conservation, and the polarization drift formula is no longer valid:
- Cyclotron resonance (can be used for plasma heating for example)
- In order to confine charged particles in a magnetic field for many single particle collisions:
- Must have a small Larmor radius
- In this limit, full orbit calculations are very expensive, and generally not necessary
-The guiding center approximation is very useful here:
- Charged gyrating particle is approximated as a charged current ring, with constant anti-aligned magnetic dipole moment, sliding along the magnetic field line in the ring center
- Such particles have slow drifts away from their "birth" magnetic field line, which can be calculated analytically
- Can calculate complicated trajectories with relative ease
- Can identify good magnetic traps (particles confined for many collisions) and ones that are less successful...
- Can identify good magnetic traps (particles confined for many collisions) and ones that are less successful...

Examples in the following slides:

Pure toroidal field trap (Example:neutral plasma)

- The magnetic field from a dense toroidal set of coils is equivalent to that from an infinite, straight current carrying wire
- Particles experience magnetic drifts in the vertical direction:

$$
\vec{v}_{\nabla B+R_{C}}=\frac{2 m v_{\|}^{2}+m v_{\perp}^{2}}{2 B} \frac{\vec{B} \times \nabla B}{q B^{2}}
$$

Opposite for ions and electrons - they drift apart

Pure toroidal field trap (Example:neutral plasma)

- Opposite for ions and electrons - they drift apart

$$
\vec{v}_{\nabla B+R_{C}}=\frac{2 m v_{\|}^{2}+m v_{\perp}^{2}}{2 B} \frac{\vec{B} \times \nabla B}{q B^{2}}
$$

- Vertical electric field sets up: $\vec{v}_{E}=\frac{E \hat{z} \times B \hat{\varphi}}{B^{2}}=\frac{E}{B} \hat{R}$
- Outward radial expansion of plasma - no confinement

Non-neutral plasmas in a stellarator

- A stellarator is a magnetic surface configuration: Each magnetic field line wraps around a toroidal surface, never leaving the surface.
- Also mainly toroidal field - also vertical drift of particles?
- No - vertical drifts cancel because of the poloidal motion that the particle has, as a result of parallel motion along the magnetic field

Without E-field, CNT has "bad" orbits!

CNT is a "classical stellarator" - will not work well for fusion:
About 50\% of particles are magnetically trapped (due to mirror force/first adiabatic invariant).

They don't circulate toroidally, therefore don't circulate poloidally, and drift out of CNT due to the magnetic drifts. Example:

$$
t=0.00 \mu \mathrm{~s}
$$

ExB could come to the rescue

A strong space charge electric field - constant on a magnetic surface - is added to the simulation of the trapped particle

Now it is confined! For much the same reasons as in the pure toroidal field trap

$$
\mathrm{t}=0.00 \mu \mathrm{~s}
$$

Electric fields in stellarators

How large of a role does the bulk ExB drift play relative to the magnetic drifts?

$$
\left|\frac{v_{E x B}}{v_{\nabla B}}\right| \approx\left|\frac{\nabla \phi / B}{\left(W_{k} \nabla B / e B^{2}\right)}\right| \approx\left|\frac{e \phi}{W_{k}}\right|
$$

Pure-electron plasma: Dominant (factor of 10-1000)
Thermal particles in a quasineutral plasma: Depends.. (0.2-5)
Set by ambipolarity: In steady state, the positive and negative charges of the plasma must leave at the same rate (they "arrive" by neutralization of atoms - ie. at the same rate).
If one species has a tendency to be less well confined (higher mass, higher temperature etc) it will initially leave faster, leaving space charge electric fields that begin to hold it back.
For some plasmas, $T_{e} \gg T_{i}$ which drives a relatively strong positive radial electric field to "hold electrons in and push ions out" - but actually typically improves confinement of both species For $\mathrm{Te} \sim \mathrm{Ti}$, usually a negative radial electric field develops
The orbit healing magic of a radial electric field cannot "fix" α-confinement in a future reactor: Ratio is negligibly small: $\sim 35 \mathrm{keV} / 3.5 \mathrm{MeV} \sim 0.01$)

