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•Motivation for studying single particle orbits in magnetic fields

•Motion in a straight uniform B-field (basic review)

•The guiding center approximation

•Motion including a static electric field, or gravity

•Motion in inhomogeneous and bent B-fields and the first adiabatic 
invariant

•Mirror confinement

•Time variation (no derivation)   

Overview
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•The easiest fusion process to reach is D-T fusion

•This requires particle kinetic energies in the range 10-100 keV

•Even at the particle energy of peak D-T fusion reactivity, non-fusion 
collisions (scattering) dominate over the fusion collisions by two orders of 
magnitude

•Must confine plasma at T>10 keV (~120 M Kelvin) for many collisions

•Thermal speed of D and T is on the order of 106 m/s at these 
temperatures (and even higher for electrons) – μs confinement if you 
have no confining field?

•Electric fields alone won’t work: Confine only one species

•Magnetic fields may work (must be bent!)

•Gravity works on the sun, but not on Earth

The need for magnetic field confinement
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•A charged particle performs a screw-like path if it is confined by a 
straight uniform magnetic field and it feels no other forces

•Start with Newton’s 2nd law and the Lorentz force:

Charged particle motion in a straight magnetic field
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F = m a = q v ×

 
B 

 
B = B0 ˆ z 
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•Newton’s 2nd law written coordinate by coordinate:

Charged particle motion in a straight magnetic field
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dvx
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m

vx

dvz
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= 0


F =ma = qv ×


B⇒
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•Newton’s 2nd law written coordinate by coordinate:

•qB0/m is an inverse time scale

Charged particle motion in a straight magnetic field
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=
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dvy
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= 0
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•qB0/m is an inverse time scale: give it it’s own symbol

Charged particle motion in a straight magnetic field
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dvx
dt

=ω cvy

dvy
dt

= −ω cvx

dvz
dt

= 0

ω c =
qB0

m
 -  sometimes ω c =

qB0

m
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•Decouple vx and vy equations: 

Charged particle motion in a straight magnetic field
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d
dt

dvx
dt

=ω cvy
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dvy
dt

= −ω cvx

dvz
dt

= 0

ω c =
qB0
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 -  sometimes ω c =

qB0

m
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•Eliminate vy from vx equation by differentiation and substitution

•Vz equation is trivial

Charged particle motion in a straight magnetic field

€ 

d2vx
dt 2 =ω c

dvy
dt

dvy
dt

= −ω cvx

$ 

% 
& 

' 
& 
⇒

d2vx
dt 2 = −ω c

2vx

dvz
dt

= 0⇒ vz = constant = v||

ω c
2 = (qB0

m
)2  
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•Eliminate vy from vx equation by differentiation and substitution:

Charged particle motion in a straight magnetic field

dvx
dt

=ωcvy

dvy
dt

= −ωcvx

"

#
$
$

%
$
$

⇒
d 2vx
dt2 = −ωc

2vx  

dvz
dt

= 0 ⇒ vz = constant=v||

ωc
2 = (qB0

m
)2  

•We recognize the simple harmonic oscillator for vx

•Find vy by differentiation

•Vz equation is trivial:
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•Eliminate vy from vx equation by differentiation and substitution:

Charged particle motion in a straight magnetic field

dvx
dt

=ωcvy

dvy
dt

= −ωcvx

"

#
$
$

%
$
$

⇒

d 2vx
dt2 = −ωc

2vx

vy =
1
ωc

dvx
dt

 

dvz
dt

= 0 ⇒ vz = constant=v||

ωc
2 = (qB0

m
)2  

•We recognize the simple harmonic oscillator for vx

•Find vy by differentiation

•Vz equation is trivial:
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•Velocity components:

Charged particle motion in a straight magnetic field

€ 

vx = v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  

•Next step: integrate to get position
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•Integrate in time to get position

•Define Larmor radius and guiding center:

Charged particle motion in a straight magnetic field

vx = v⊥ cos(ωct +δ)⇒ x = xgc +
v⊥
ωc

sin(ωct +δ)

vy = −v⊥ sin(ωct +δ)⇒ y = ygc +
v⊥
ωc

cos(ωct +δ)

vz=v|| ⇒ z = z0 +v||t

ωc =
qB0

m
 (cyclotron frequency), fc =ωc / 2π

rL =
v⊥
ωc

=
mv⊥
qB0

 (Larmor radius, gyroradius)

Lecture on guiding center approximation 13



•If the Larmor radius is on the order of the size of the confining field, then 
only collisionless orbits are confined:

•After a collision, the particle will have a new guiding center, 
about one Larmor radius away from the original guiding center

•If this new Larmor orbit intersects material walls or extends to 
regions of much lower B-field, the particle is not confined

•In order to confine charged particles magnetically for many collision 
times, the Larmor radius must be small!

•When the Larmor radius is small, and the cyclotron frequency is large:

• one can derive analytic formulas for the time evolution of the guiding 
center (xgc, ygc, z), averaging over the gyration 

The guiding center approximation:

rL << B /∇B and ωc >>
∂B
∂t

1
B

 (*)
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•For a 1 eV electron in a B=1 T field, the cyclotron frequency is large and 
the Larmor radius small:

The guiding center approximation is often necessary:

€ 

ω c ≈1.8 ×10
11s−1

rL ≈ 3 ×10
−6m

•Just to follow the electron for one microsecond requires >106 time steps 
if a simple numerical scheme is used. 

•Almost the full computational effort is spent calculating the circular 
motion….

•Averaging over the gyromotion allows fast and accurate calculations of 
the motion of charged particles in a magnetic field, both analytic and 
numerical

•Essentially,  the gyrating particle is replaced by a charged (q), massive 
(m) ring of current (I=eωc/2π) , with its center at the particle’s gyrocenter.  

•We will do this for a few important cases in the following:
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•Since particles are charged, the electric field naturally enters the 
equations (collective phenomena, external confining fields, single particle 
Coulomb interactions) 

•Electric field component along B gives simple acceleration or 
deceleration

•Electric field component perpendicular to B is more interesting:

•Example below: Electron

ExB drift

rL =
v⊥
ωc
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•Net effect is a motion in the ExB direction which has a steady state 
component

•Let’s calculate this drift: 

ExB drift
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•Newton’s 2nd law written coordinate by coordinate (again)

•Let’s add an electric field now

ExB drift
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dvx
dt

=
qB0
m
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dvy
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= −
qB0
m

vx

dvz
dt

= 0
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ExB drift
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=
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•Ey/B0 is a velocity, vE; it is constant since we assumed E and B constant.

ExB drift

dvx
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m
(vx −

Ey

B0
)

dvz
dt

= 0
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•Ey/B0 is a velocity, vE; it is constant since we assumed E and B constant.

ExB drift

dvx
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m
(vx − vE )

dvz
dt

= 0
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ExB drift

d(vx − vE )
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m
(vx − vE )

dvz
dt

= 0

•E/B is a velocity, vE; it is constant since we assumed E and B constant.

•Since vE is constant, we can subtract it inside the d/dt of x-equation
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•E/B is a velocity, vE; it is constant since we assumed E and B constant.

•Since vE is constant, we can subtract it inside the d/dt of x-equation

ExB drift
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d(vx − vE )
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m
(vx − vE )

dvz
dt

= 0

Now
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•E/B is a velocity, vE; it is constant since we assumed E and B constant.

•Since vE is constant, we can subtract it inside the d/dt of x-equation

ExB drift

€ 

d(vx − vE )
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m
(vx − vE )

dvz
dt

= 0

Now

dvx
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m

vx

dvz
dt

= 0

Before
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ExB drift

€ 

d(vx − vE )
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m
(vx − vE )

dvz
dt

= 0

Now

dvx
dt

=
qB0
m

vy

dvy
dt

= −
qB0
m

vx

dvz
dt

= 0

Before

•It’s clear we have the same equation as before, just replacing vx by vx-vE
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•It’s clear we have the same equation as before, just replacing vx by vx-vE

ExB drift

Now Before

€ 

vx = v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  

vx − vE = v⊥ cos(ωct +δ)
vy = −v⊥ sin(ωct +δ)
vz = v||

ωc
2 = (qB0

m
)2  
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•It’s clear we have the same equation as before, just replacing vx by vx-vE

ExB drift

Now Before

€ 

vx = v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  

€ 

vx = vE + v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  
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•It’s clear we have the same equation as before, just replacing vx by vx-vE

ExB drift

Now Before

€ 

vx = v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  
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vx = vE + v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  
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•It’s clear we have the same equation as before, just replacing vx by vx-vE

ExB drift

Now Before

€ 

vx = v⊥cos(ω ct +δ)
vy = −v⊥sin(ω ct +δ)
vz = v||

ω c
2 = (qB0

m
)2  

vx =
Ey

B0

+ v⊥ cos(ωct +δ)

vy = −v⊥ sin(ωct +δ)
vz = v||

ωc
2 = (qB0

m
)2  
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•For situations with constant uniform E and B fields, we can always define 
a local coordinate system where z is in the B-field direction and y is in the 
direction of the component of E perpendicular to B; hence, our derivation 
is valid in any coordinate system. The coordinate free formula for vE is: 

ExB drift: Coordinate-free formulation

  

€ 

 v E =

 
E ×
 
B 

B2 = −
∇φ ×

 
B 

B2

•The drift is independent of the particle! No reference to q or m

•Same for ions and electrons

•The drift goes along constant φ surfaces – does not change the 
electrostatic energy of the particle
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•We can also prove that the particles ExB drift without using coordinates 

ExB drift: Coordinate-free derivation

  

€ 

 v E =

 
E ×
 
B 

B2 = −
∇φ ×

 
B 

B2

•We know what we are looking for:        v" = %⃗& + %⃗(
) *%⃗
*+ = , -" + %⃗×/ ⇒ )*%⃗"

*+ = , -" + %⃗(×/ + %⃗&

= , -" + -×/ × /
/1 + %⃗& = ,%⃗&×/ ⇔ )*%⃗&

*+ = ,%⃗&×/
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ExB drift

  

€ 

 v E =

 
E ×
 
B 

B2 = −
∇φ ×

 
B 

B2

•The drift is independent of the particle! There is no reference to q or m

•Same for ions and electrons, pions, all charged particles….why?

Answer: In the inertial frame that moves  at the ExB velocity, there is no E-field!

Lorentz transform:

  

€ 

E '= γ(
 
E +  v ×

 
B ) + (1−γ)

 v ⋅
 
E 

v 2
 v =

γ(
 
E +
 
E ×
 
B 

B2 ×
 
B ) = γ(

 
E −
 
E ) = 0

•A charged particle therefore performs simple cyclotron motion in that frame 
(as long as vE=E/B<c)

•Exercise: What happens when E/B>c?
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FxB drift

•The derivation we did only used Newton’s 2nd law – no reference to the 

Lorentz transform or Maxwell’s equations

•(then afterwards it was realized that we could have used Lorentz)

•But this is actually an advantage: Our derivation can be trivially extended 

to any other constant perpendicular force acting on our particle:

  

€ 

 v E =

 
E ×
 
B 

B2

 v F =

 
F ×
 
B 

qB2

•The general force drift cares about the particle’s charge, as one would 

expect. Example F=mg leads to a gravitational drift in opposite directions 

for electrons and ions.
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•In some traps, the magnetic field is non-uniform

•We assumed B straight and uniform

•What happens when (for example) the B-field strength changes 
spatially?

Non-uniform B-field
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•In some traps, the magnetic field is non-uniform

•We assumed B straight and uniform

•What happens when (for example) the B-field strength changes 
spatially?

•Assume for simplicity here: B-field is straight but increases in strength

Non-uniform B-field
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•One can derive this drift by Taylor expanding the B-field, taking 
advantage of the smallness of the Larmor radius (keeping only 1st order 
terms)

Non-uniform B-field

€ 

Bz(x,y,z) = B0 +
∂Bz

∂y
(y − ygc ) +O(ε 2)

ε =
∇B
B
rL <<1
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•Instead of Taylor expanding, it is also possible to derive this drift much 
faster by introducing the first adiabatic invariant μ:

•This invariant is very useful in several contexts

•Background: 

•The concept of adiabatic invariants is known from analytic 
mechanics

•Assume a particle performs periodic motion in one coordinate q

•Then one can define the action as:

•Here pq is the generalized momentum associated with q

•If one perturbs the periodic motion by a small amount ε, the action 
remains conserved, to all powers in ε

•We have already one periodic motion – the gyration. The coordinate for 
the gyration is θ, and pθ=mvθr is the associated generalized momentum 
(we recognize it’s just the angular momentum in the gyration)  

Adiabatic invariants

€ 

pqdq∫
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•μ is conserved – it is actually the magnetic dipole moment of the 
charged particle, if we consider the particle as a charged current ring with 
radius rL

The first adiabatic invariant

€ 

pqdq∫ = mvθ rdθ =
0

2π
∫ mv⊥rLdθ =

0

2π
∫ 2πmv⊥rL =

2πmv⊥
mv⊥
qB

=
4πm
q

1
2 mv⊥

2

B
= constant

so µ =
1
2 mv⊥

2

B
= constant

€ 

IA =
qω c

2π
πrL

2 =
q2B
2πm

π (mv⊥
qB
)2 =

mv⊥
2

2B
= µ
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•This magnetic dipole is anti-aligned with the magnetic field (a plasma is 
diamagnetic)

•A magnetic dipole with strength μ embedded in a magnetic field B anti-
aligned to the dipole has potential energy μB, so it feels a force

This is the so-called mirror force

This force also works for neutral particles as long as they have a magnetic 
dipole moment (Example: Antihydrogen)

If the force is along B, it can provide some confinement along the field 
lines for charged particles – they can be reflected by a magnetic mirror

(Mirror confinement was attempted for fusion but is not pursued 
much these days)

If the force is perpendicular to B, then we get a drift

The first adiabatic invariant is the dipole moment

€ 

IA =
qω c

2π
πrL

2 =
q2B
2πm

π (mv⊥
qB
)2 =

mv⊥
2

2B
= µ

  

€ 

 
F = −µ∇B
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•We use now the FxB formula we derived earlier:

Non-uniform B-field strength

  

€ 

 
F = −µ∇B = −µ

dBz

dy
ˆ y 

 v ∇B =

 
F ×
 
B 

qB2 =
−µ∇B ×

 
B 

qB2 =
mv⊥

2

2B

 
B × ∇B

qB2
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•If the magnetic field strength is inhomogeneous, the magnetic field is 
usually also curved

•It has to be curved if it’s inhomogeneous, unless you have significant 
currents

•In the guiding center approximation, the zeroth order motion is along 
the magnetic field. 

•So if the magnetic field is curved, the particle feels a centrifugal force: 

Non-uniform B-field direction: Curvature drift


FC =

mv||
2

RC


RC

RC
vRC =


FC ×


B

qB2
=
mv||

2

RC
2


RC×

B

qB2
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•With a bit of algebra, we can combine the grad B and curvature drifts 
into one formula – assuming that the current density is negligible. This is 
not universally true but often enough that it is useful to derive this 
combined formula.

Combining the two drifts

∇×

B = µ0


j = 0

∇⋅

B = 0

•If the magnetic field has curvature, we can go into a local cylindrical 
coordinate system with the axis given by the axis for the radius of curvature 
(blackboard). In that coordinate system:


B = Br (r,θ, z)r̂ +Bθ (r,θ, z)θ̂ +Bz (r,θ, z)ẑ = Bθ (r,θ, z)θ̂ = Bθ (r,θ )θ̂
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Combining the two drifts

∇⋅

B = 0⇒ 1

r
∂(rBr )
∂r

+
1
r
∂Bθ
∂θ

+
∂Bz
∂z

= 0⇒ ∂Bθ
∂θ

= 0⇒

B = Bθ (r)θ̂

•We need Goldston and Rutherford (or another formula book) to write the 
differential operators in cylindrical coordinates:


B = Br (r,θ, z)r̂ +Bθ (r,θ, z)θ̂ +Bz (r,θ, z)ẑ = Bθ (r,θ, z)θ̂ = Bθ (r,θ )θ̂

•This helps us significantly simplify the curl equation, which is otherwise 
terribly complicated:

∇×

B = 1

r
(∂Bz
∂θ

−
∂Bθ
∂z
)r̂ + (∂Br

∂z
−
∂Bz
∂r
)θ̂ + 1

r
(∂(rBθ )
∂r

−
∂Br
∂θ
)ẑ

∇×

B = 1

r
(∂(rBθ )
∂r

)ẑ = 0⇔ rBθ = constant (c)

⇔ Bθ =
c
r
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Combining the two drifts

B = Bθ =
c
r
⇒∇B = − c

r2
r

∇B
B

=
−
c
r2
r̂

c
r

=
−r̂
r
=
−

Rc
Rc
2
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•Thus, we have shown in the last few slides that:

Combining the two drifts

  

€ 

∇ ×
 
B = µ0

 
j = 0

∇⋅
 
B = 0

% 
& 
' 
⇒

∇B
B

= −

 
R C
RC
2

•Therefore we can combine the two magnetic non-uniformity drifts into one 
formula:

  

€ 

 v ∇B +RC
=
2mv||

2 + mv⊥
2

2B

 
B × ∇B

qB2

•These two drifts add up – no magic cancellation

•The drifts are “slow” in general, verifying our perturbative approach:

•E=100 eV electron in B=1 T and RC= 1 m:

•vRc~100 m/s vs ~5*105 m/s free streaming velocity and rL ~3 μm
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•The mirror force !"# for a guiding center particle can also be parallel to 
B, and thereby provide confinement of guiding center particles in the 
third direction

•This immediately brings up the question whether this is physical – how 
can %⃗×# have a component parallel to # ?

Mirror force – mirror confinement

Bmin

Bmax

L

• Look at a particle whose guiding center is on the axis – the straight 
field line - of the magnetic configuration above
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•The particle is in in a region of converging field lines:
!" = !" $
% ⋅ ! = 0

1
)
*
*) )!+ + *!"

*$ + 1
)
*!-
*. = 0 ⇔ *

*) )!+ = −) *!"*$
)!+ = − 12 )

2 *!"
*$ ⇔ !+ = − 12 )

*!"
*$

4⃗ = 56⃗×! ⇒ 4" = 56-!+ ⇔
4" = − 12 56-)9

*!"
*$ = − 12 56:

;6:
5 !

*!"
*$ = −< *!"*$

Mirror force for a generic situation

Bmin

Bmax

L
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Mirror confinement (mirror-reflected particles)

Bmin

Bmax

L

• Now that we believe in the mirror force, we see that it can be used for 
confinement.

• We also recognize that  !" is the potential energy of the guiding center 
particle due to its magnetic moment. 

• A guiding center particle is in a potential well in a mirror device (above)
• For which particles is the potential well sufficiently deep for trapping?

!" = 1
2&'(

), ! = +,-./0-/
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Mirror confinement (mirror-reflected particles)

Bmin

Bmax

L

!" = 1
2&'(

), ! = +,-./0-/

1
)&'

) = 1
)&'(

) + 1
)&'||

)=!" + 1
)&'||

)=constant=Ek

4"
4/ = 0

!" ≤ 78

! = 1
2&'(9

) /B<=>

If !"?@A>Ek then the particle is trapped, otherwise it passes through

1
2
&'(9)
"?BC

"?@A >
1
2&'9

) ⇔ "?@A
"?BC

> '9)
'(9)
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Mirror confinement (mirror-reflected particles)

Bmin

Bmax

L

!"
!# = 0

"&'(
"&)*

> ,-.
,/-.

= 1
sin. 4 ⇔ sin. 4 > "&)*

"&'(

• θ is the angle between the velocity vector and the B-field vector
• Only part of the Maxwellian is confined – there are always particles that have a small 

pitch angle 
• The mirror ratio Bmax/Bmin is limited by available magnet technology and by needing 

a minimum (!) Bmin so the particles are confined in the long region
• The trapped particles perform a periodic motion in the parallel direction giving rise 

to a second adiabatic invariant J=∮-
7 ,||9:

• An electrostatic potential can add (or subtract) to the potential well: ;< + >"
• For uniform B (mirror ratio 1) we must use an electrostatic potential: Penning trap
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•For the magnetic moment to be conserved, the gyration needs to be a nearly 
periodic motion. We earlier required that the Larmor radius be small 
compared to the distance over which the B-field changes:

The parallel Larmor radius

B
|∇B |

>> rL =
mv⊥
qB

•We clearly must require also that the particle does not move into a region with 
a substantially different magnetic field (direction or strength) in a single 
gyration. 

B
|∇B |

>>
2πv||
ωc

= 2π mv||
qB

= 2πrL||

•Thus, the “parallel Larmor radius” must also be small compared to the 
characteristic scale length over which B changes
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•One can show that μ is conserved also when dB/dt is nonzero, as long as 
the B field variation is small in one gyration and has no frequency 
component near ωc

•Implies that perpendicular kinetic energy changes, which is due to E:  

Time varying fields

•For ω=ωc there is no μ conservation, and the polarization drift formula is no 
longer valid: 

•Cyclotron resonance (can be used for plasma heating for example) 

  

€ 

∇ ×
 
E = −∂

 
B 
∂t

  

€ 

 v D =
m∂
 
E 
∂t

qB2  if ω <<ω c

•A time varying E-field gives rise to a so-called polarization drift (in addition 
to an altered ExB drift):
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•In order to confine charged particles in a magnetic field for many single 
particle collisions:

•Must have a small Larmor radius

•In this limit, full orbit calculations are very expensive, and generally not 
necessary

•The guiding center approximation is very useful here:

•Charged gyrating particle is approximated as a charged current ring, 
with constant anti-aligned magnetic dipole moment, sliding along the 
magnetic field line in the ring center

•Such particles have slow drifts away from their “birth” magnetic 
field line, which can be calculated analytically

•Can calculate complicated trajectories with relative ease

•Can identify good magnetic traps (particles confined for many 
collisions) and ones that are less successful…

Summary
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•Can identify good magnetic traps 
(particles confined for many 
collisions) and ones that are less 
successful…

Examples in the following slides:
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• The magnetic field from a dense toroidal set of coils is equivalent to that 
from an infinite, straight current carrying wire

• Particles experience magnetic drifts in the vertical direction:

Opposite for ions and electrons – they drift apart 

Pure toroidal field trap (Example:neutral plasma)
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• Opposite for ions and electrons – they drift apart 

• Vertical electric field sets up:

• Outward radial expansion of plasma – no confinement

Pure toroidal field trap (Example:neutral plasma)
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• A stellarator is a magnetic surface configuration: Each 
magnetic field line wraps around a toroidal surface, never 
leaving the surface. 

• Also mainly toroidal field – also vertical drift of particles?
• No – vertical drifts cancel because of the poloidal motion 

that the particle has, as a result of parallel motion along the 
magnetic field

Non-neutral plasmas in a stellarator
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Without E-field, CNT has “bad” orbits!

CNT is a “classical stellarator” – will not work well for fusion:

About 50% of particles are magnetically trapped (due to mirror force/first 

adiabatic invariant).

They don’t circulate toroidally, therefore don’t circulate poloidally, and drift 

out of CNT due to the magnetic drifts. Example:
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ExB could come to the rescue

A strong space charge electric field – constant on a magnetic surface – is added to the 
simulation of the trapped particle

Now it is confined! For much the same reasons as in the pure toroidal field trap
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Electric fields in stellarators

vExB
v∇B

≈
∇φ / B

(Wk∇B / eB
2 )
≈
eφ
Wk

How large of a role does the bulk ExB drift play relative to the magnetic drifts?

Pure-electron plasma: Dominant (factor of 10-1000)

Thermal particles in a quasineutral plasma: Depends.. (0.2-5)

Set by ambipolarity: In steady state, the positive and negative charges of the plasma must 
leave at the same rate (they “arrive” by neutralization of atoms – ie. at the same rate).

If one species has a tendency to be less well confined (higher mass, higher temperature etc) 

it will initially leave faster, leaving space charge electric fields that begin to hold it back.
For some plasmas, Te>>Ti which drives a relatively strong positive radial electric field to “hold 

electrons in and push ions out” – but actually typically improves confinement of both species

For Te~Ti, usually a negative radial electric field develops

The orbit healing magic of a radial electric field cannot “fix” α-confinement in a future reactor:
Ratio is negligibly small: ~35 keV/3.5 MeV~0.01)
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